


2 CROSSTALK The Journal of Defense Software Engineering February 2005

Cover Design by
Kent Bingham.

3

7
17
21
30
31

DeparDepar tmentstments

ON THE COVER

From the Sponsor
From the Publisher

Call for Articles

Web Sites

Coming Events

SSTC 2005 Conference Registration

BackTalk

CrossTalk
OC-ALC/ MAS 

CO-SPONSOR

OO-ALC/MAS
CO-SPONSOR

WR-ALC/MAS
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Oklahoma City-Air Logistics Center (OC-ALC),
Ogden-Air Logistics Center (OO-ALC), and Warner
Robins-Air Logistics Center (WR-ALC) MAS
Software Divisions are the official co-sponsors of
CROSSTALK, The Journal of Defense Software
Engineering. The MAS Software Divisions and the
Software Technology Support Center (STSC) are
working jointly to encourage the engineering develop-
ment of software to improve the reliability, sustainabil-
ity, and responsiveness of our warfighting capability.

The STSC is the publisher of CrossTalk, provid-
ing both editorial oversight and technical review of the
journal.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 7.

OO ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-7026, or e-mail <stsc. web-
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Understanding Risk Management
This broad overview of proactive risk management takes you from
a process description of risk, to risk planning and handling,
through risk monitoring and documentation. It also includes a
checklist for rapid self-inspection.
by Software Technology Support Center

Risk Management for Systems of Systems
Integrating diverse sets of systems and hardware, all at different
maturity levels, presents unusual challenges and risks. This author
examines methods for better implementing risk management on
such programs.
by Dr. Edmund H. Conrow

Inherent Risks in Object-Oriented Development
This author introduces a systematic approach to understanding
the cost/benefit aspects of applying object-oriented technology,
and to aligning project management strategies more successfully
with the organization’s business goals.
by Dr. Peter Hantos

Software Risk Management From a System Perspective 
Here is proof that staying focused on the basics of risk
management at the system level, from the get-go, is an essential
part of minimizing risks and ensuring the success of even the
most challenging and complex development projects.
by George Holt 

Managing Acquisition Risk by Applying Proven Best
Practices
A compilation of nine government and commercial program
assessments indicates that successful acquisition risk management
is based on educated leadership, a supportive organizational cul-
ture, proven best practices adapted to specific circumstances, and
emphasizing the program environment.
by Mike Evans, Corinne Segura, and Frank Doherty

Risk Management (Is Not) for Dummies
The risk manager combines detailed knowledge of the project with
general knowledge of the technical domain and the acquisition
environment to foresee potential undesirable events, and to plan
and take actions accordingly.
by Lt. Col. Steven R. Glazewski

Risk Risk ManaManaggementement

4

8

13

18

22

27

Best Best PracticesPractices

Open Open FForumorum



February 2005 www.stsc.hill.af.mil 3

Risk management really has no boundaries. Even routine tasks can benefit from main-
taining a successful operational risk management (ORM) program. After once miss-

ing a flight from Los Angeles due to traffic congestion, I devised a risk management plan
for my business travel. I now schedule my flights around rush-hour traffic. On the night
before I leave to return home, I transfer to a hotel just outside of the airport. I also ask
around to make sure I know how much time it takes to get through ticketing and securi-
ty at the airport under the new homeland security measures. By thinking through the

potential snags in my travel plans, I can avoid a costly delay in reuniting with my family back home.
Over the last several years, the Air Force has required all levels of the agency to implement

ORM. Despite the policy and mandatory training, it is still uncommon for organizations to insti-
tutionalize risk management, let alone consider simple, day-to-day changes to reduce risk. Many
of these organizations stop at a risk management plan for their organization.

Risk management is not a program to fill a policy, a Capability Maturity Model® objective, or other
square: It is good business. Mature software organizations serious about managing risk instill process-
es that manage it at the project level. Key elements included in an effective risk management plan are
to implement process at the project level, not just the organizational level; identify who can accept
what risk; evaluate probability and consequence; include a mechanism for recurring evaluation of risk;
track risk mitigation; and provide ownership to project members for identifying and managing risk.

ORM is a process of identifying and controlling hazards – something each of us deals with
daily in our personal lives and at the workplace. As professionals, we owe it to our ultimate cus-
tomers – the warfighters – to deal effectively with risks and increase the probability of their suc-
cessful missions.

Risk Management Offers Broad Payoffs

Kevin Stamey
Oklahoma City Air Logistics Center, Co-Sponsor

From the Sponsor

In last month’s issue, we published a policy memorandum titled “Revitalizing the
Software Aspects of Systems Engineering.” Risk management, one of the 10 soft-

ware focus areas highlighted in this memo, is the theme of this month’s issue. Where
does one start to revitalize this important management practice? Informing, educating,
and reminding your workforce is one place, and CrossTalk can help. This month
we include several articles describing both the basics of an effective risk management
process and how a variety of projects are employing and benefiting from risk manage-

ment. Risk management challenges are also presented, and authors are quick to point out that
this practice isn’t easy due to the uniqueness of system program risks.

I’d like to share a few thoughts that might be helpful as you evaluate your risk management
activities or lack thereof. Take a minute and compare risk management to exercise. You’ll prob-
ably agree that our personal lives are so busy that we struggle to find even a spare hour to devote
to exercise. But we all know it’s a continuous requirement for our bodies to be physically fit and
healthy. We also hear how exercise is a critical issue with our youth today – they need plenty of
exercise, too. So, if you are a project manager and your daily routine seems too full to squeeze
in another task, think about setting project time aside to exercise your risk management skills.
And don’t do it alone; involve your teams and make it a routine for all.

I hope you find this month’s issue a good reminder of why practicing risk management is
critical to a healthy and successful program.

Exercising Risk Management Skills

Tracy Stauder
Publisher

From the Publisher



4 CROSSTALK The Journal of Defense Software Engineering February 2005

Risk Management

Risk is a product of the uncertainty of
future events and is a part of all

activity. It is a fact of life. We tend to stay
away from situations that involve high
risk to things we hold dear. When we can-
not avoid risk, we look for ways to reduce
it or its impact upon our lives. Yet even
with careful planning and preparation,
risks cannot be completely eliminated
because they cannot all be identified
beforehand. Even so, risk is essential to
progress.

The opportunity to succeed also car-
ries the opportunity to fail. It is necessary
to learn to balance the possible negative
consequences of risk with the potential
benefits of its associated opportunity [1].
Risk may be defined as the possibility to
suffer damage or loss. The possibility is
characterized by three factors [1]:
1. The probability or likelihood that loss

or damage will occur.
2. The expected time of occurrence.
3. The magnitude of the negative

impact that can result from its occur-
rence.
The seriousness of a risk can be

determined by multiplying the probabili-

ty of the event actually occurring by the
potential negative impact to the cost,
schedule, or performance of the project:

Risk Severity = Probability of
Occurrence x Potential Negative

Impact

Thus, risks where probability of occur-
rence is high and potential impact is very
low, or vice versa, are not considered as
serious as risks where both probability of
occurrence and potential impact are
medium to high.

Project managers recognize and
accept the fact that risk is inherent in any
project. They also recognize that there
are two ways of dealing with risk. One,
risk management, is proactive and care-
fully analyzes future project events and
past projects to identify potential risks.
Once risks are identified, they are dealt
with by taking measures to reduce their
probability or to reduce their impact. The
alternative to risk management is crisis
management. It is a reactive and
resource-intensive process, with available
options constrained or restricted by
events [1].

Effective risk management requires
establishing and following a rigorous
process. It involves the entire project
team, as well as requiring help from out-
side experts in critical risk areas (e.g.,
technology, manufacturing, logistics,
etc.). Because risks will be found in all
areas of the project and will often be
interrelated, risk management should
include hardware, software, integration
issues, and the human element [2].

Process Description
Various paradigms are used by different
organizations to coordinate their risk
management activities. A commonly used
approach is shown in Figure 1. While
there are variations in the different para-

digms, certain characteristics are univer-
sally required for the program to be suc-
cessful [2]:
• The risk management process is

planned and structured.
• The risk process is integrated with the

acquisition process.
• Developers, users, procurers, and all

other stakeholders work together
closely to implement the risk process.

• Risk management is an ongoing
process with continual monitoring
and reassessment.

• A set of success criteria is defined for
all cost, schedule, and performance
elements of the project.

• Metrics are defined and used to mon-
itor effectiveness of risk management
strategies.

• An effective test and evaluation pro-
gram is planned and followed.

• All aspects of the risk management
program are formally documented.

• Communication and feedback are an
integral part of all risk management
activities.
While your risk management

approach should be tailored to your pro-
ject needs, it should incorporate these
fundamental characteristics. The process
is iterative and should have all the com-
ponents shown in Figure 2. Note that
while planning appears as the first step,
there is a feedback loop from the moni-
toring activity that allows planning and
the other activities to be redone or con-
trolled by actual results, providing contin-
ual updates to the risk management strat-
egy. In essence, the process is a standard
approach to problem solving:
1. Plan or define the problem-solving

process.
2. Define the problem.
3. Work out solutions for those prob-

lems.
4. Track the progress and success of the

solutions.

Understanding Risk Management

The U.S. Air Force’s Software Technology Support Center offers an updated and condensed version of the “Guidelines for
Successful Acquisition and Management of Software-Intensive Systems” (GSAM) on its Web site <www.stsc.hill.af.mil/
resources/tech_docs>. This article is taken from Chapter 5 “Risk Management” of the GSAM (Version 4.0). We are
pleased that all editions have been so well received and that many individuals and programs have worked hard to implement
the principles contained therein. The latest edition provides a usable desk reference that gives a brief but effective overview of
important software acquisition and development topics, provides checklists for rapid self-inspection, and provides pointers to
additional information on the topics covered.

Figure 1: Software Engineering Institute’s Risk
Management Paradigm [3]

[3]

Track

Plan

A
na

ly
ze

Identify
Control

Communicate

Planning Handling MonitoringAssessment

Software Technology Support Center

 



Understanding Risk Management

February 2005 www.stsc.hill.af.mil 5

The following sections expand upon the
risk management approach.

Planning
Risk planning includes developing and
documenting a structured, proactive, and
comprehensive strategy to deal with risk.
Key to this activity is establishing meth-
ods and procedures to do the following:
1. Establish an organization to take part

in the risk management process.
2. Identify and analyze risks.
3. Develop risk-handling plans.
4. Monitor or track risk areas.
5. Assign resources to deal with risks.

A generic sample risk management
plan can be found in Appendix B of the
“Risk Management Guide for DoD
Acquisition” [4].

Assessment
Risk assessment involves two primary
activities: risk identification and risk
analysis. Risk identification is actually
begun early in the planning phase and
continues throughout the life of the pro-
ject. The following methods are often
used to identify possible risks [1]:
• Brainstorming.
• Evaluations or inputs from project

stakeholders.
• Periodic reviews of project data.
• Questionnaires based on taxonomy,

the classification of product areas and
disciplines.

• Interviews based on taxonomy.
• Analysis of the Work Breakdown

Structure.
• Analysis of historical data.

When identifying a risk it is essential
to do so in a clear and concise statement.
It should include three components [1]:
1. Condition: A sentence or phrase

briefly describing the situation or cir-
cumstance that may have caused con-
cern, anxiety, or uncertainty.

2. Consequence: A sentence describing
the key negative outcomes that may
result from the condition.

3. Context: Additional information
about the risk to ensure others can
understand its nature, especially after
the passage of time.

Table 1 is an example of a risk statement
[1].

The other half of assessment is risk
analysis. This is the process of examining
each risk to refine the risk description,
isolate the cause, quantify the probability
of occurrence, and determine the nature
and impact of possible effects. The result
of this process is a list of risks rated and
prioritized according to their probability
of occurrence, severity of impact, and

relationship to other risk areas [2].
Once risks have been defined, and

probability of occurrence and conse-
quences assigned, the risk can be rated as
to its severity. This facilitates prioritizing
risks and deciding what level of resources
to devote to each risk. Figure 3 depicts an
assessment model using risk probability
and consequence levels in a matrix to

determine a level of risk severity. In addi-
tion to an overall method of risk rating,
the model also gives good examples of
probability levels and types and levels of
consequences. The ratings given in the
assessment guide matrix are suggested
minimum ratings. It may be necessary to
adjust the moderate and high thresholds
to better coincide with the type of project.

[3]

Planning Handling MonitoringAssessment

 Identification   Analysis

Risk Documentation

Condition  End users submit requirements changes even though we are in the design
 phase and the requirements have been baselined.
Consequence  Changes could extend system design cycle and reduce available coding time.
Probability and Impact 80%. $2 million.
Mitigation Actions  Who, what, and when?

Figure 2: Risk Management Process Example

Figure 3: Defense Acquisition University Assessment Model [4]

PROBABILITY

Level Likelihood Risk Will Happen

a

b

c

d

e

Minimal/Remote

Small/Unlikely

Probable/Likely

Large/Highly Likely

Significant/Near Certainty

ASSESSMENT GUIDE

e

d

c

b

a

1 2 3 4 5

RISK IMPACT RATING

HIGH: Significant impact on cost,
schedule, and performance. Significant
action required. High priority
management attention required.

 
MODERATE: Some impact.
Special action may be required. 
Additional management attention
may be needed.

LOW: Minimum impact. Normal
oversight needed to ensure risk
remains low.

CONSEQUENCE

Level Technical Performance Schedule Cost Impact on Other Teams

1

2

3

4

5

Minimal or No Impact

Acceptable With Some
Reduction in Margin

Acceptable With Significant
Reduction in Margin

Acceptable – No
Remaining Margin

Unacceptable

Minimal or No Impact

Additional Resources Required
– Able to Meet Need Dates

Minor Slip in Key Milestone –
Not Able to meet Need Dates

Minor Slip in Key Milestone or
Critical Path Impacted

Cannot Achieve Key Team of
Major Project Milestone

Minimal
or None

< 5%

5% - 7%

7% - 10%

> 10%

None

Some

Moderate

Major

Unacceptable

Figure 3: Defense Acquisition University Assessment Model [4]

 Identification   Analysis

Risk Documentation

Condition  End users submit requirements changes even though we are in the design
 phase and the requirements have been baselined.
Consequence  Changes could extend system design cycle and reduce available coding time.
Probability and Impact 80%. $2 million.
Mitigation Actions  Who, what, and when?

Table 1: Risk Statement Example



Risk Management

6 CROSSTALK The Journal of Defense Software Engineering February 2005

Handling
Risk handling is the process that identi-
fies, evaluates, selects, and implements
options for mitigating risks, as shown in
Figure 4. Two approaches are used in
handling risk. The first is to employ
options that reduce the risk itself. This
usually involves a change in current con-
ditions to lessen the probability of occur-
rence. The second approach, often
employed where risk probability is high,
is to use options that reduce the negative
impact to the project if the risk condition
should occur. Improving jet engine main-
tenance and inspection procedures to
reduce the risk of in-flight engine failure
is an example of the first approach.
Providing a parachute for the pilot, to
reduce loss if the risk condition should
occur, is an example of the second
approach.

Monitoring
Risk monitoring is the process of contin-
ually tracking risks and the effectiveness
of risk handling options to ensure risk
conditions do not get out of control.
This is done by knowing the baseline risk
management plans, understanding the
risks and risk handling options, establish-
ing meaningful metrics, and evaluating
project performance against the estab-
lished metrics, plans, and expected results
throughout the acquisition process.
Continual monitoring also enables new
risks to be identified if they become
apparent over time. Monitoring further
reveals the interrelationships between
various risks [2].

The monitoring process provides
feedback into all other activities to
improve the ongoing, iterative risk man-
agement process for the current and
future projects.

Documentation
Risk documentation is absolutely essen-
tial for the current, as well as future, pro-
jects. It consists of recording, maintain-
ing, and reporting risk management
plans, assessments, and handling infor-
mation. It also includes recording the
results of risk management activities,
providing a knowledge base for better
risk management in later stages of the
project and in other projects [2].
Documentation should include – as a
minimum – the following information:
• Risk management plans.

• Project metrics to be used for risk
management.

• Identified risks and their descriptions.
• The probability, severity of impact,

and prioritization of all known risks.
• Description of risk handling options

selected for implementation.
• Project performance assessment

results, including deviations from the
baseline plans.

• Records of all changes to the above
documentation, including newly iden-
tified risks, plan changes, etc.

Risk Management Checklist
This checklist is provided to assist you in
risk management. If you answer no to
any of these questions, you should exam-
ine the situation carefully for the possibil-
ity of greater risks to the project. This is
only a cursory checklist for such an
important subject. Please see [5, 6] for
more detailed checklists.
q Do you have a comprehensive,

planned, and documented approach
to risk management?

q Are all major areas/disciplines repre-
sented on your risk management
team?

q Is the project manager experienced
with similar projects?

q Do the stakeholders support disci-
plined development methods that
incorporate adequate planning,
requirements analysis, design, and
testing?

q Is the project manager dedicated to
this project, and not dividing his or
her time among other efforts?

q Are you implementing a proven
development methodology?

q Are requirements well defined, under-
standable, and stable?

q Do you have an effective require-
ments change process in place, and do
you use it?

q Does your project plan call for track-
ing/tracing requirements through all
phases of the project?

q Are you implementing proven tech-
nology?

q Are suppliers stable, and do you have
multiple sources for hardware and
equipment?

q Are all procurement items needed for
your development effort short lead-
time items (no long-lead items)?

q Are all external and internal interfaces
for the system well defined?

q Are all project positions appropriately
staffed with qualified, motivated per-
sonnel?

q Are the developers trained and expe-
rienced in their respective develop-
ment disciplines (i.e., systems engi-
neering, software engineering, lan-
guage, platform, tools, etc.)?

q Are developers experienced or famil-
iar with the technology and the devel-
opment environment?

q Are key personnel stable and likely to
remain in their positions throughout
the project?

q Is project funding stable and secure?
q Are all costs associated with the pro-

ject known?
q Are development tools and equip-

ment used for the project state-of-
the-art, dependable, and available in
sufficient quantity, and are the devel-
opers familiar with the development
tools?

q Are the schedule estimates free of
unknowns?

q Is the schedule realistic to support an
acceptable level of risk?

q Is the project free of special environ-
mental constraints or requirements?

q Is your testing approach feasible and
appropriate for the components and
system?

q Have acceptance criteria been estab-
lished for all requirements and agreed
to by all stakeholders?

q Will there be sufficient equipment to
do adequate integration and testing?

q Has sufficient time been scheduled
for system integration and testing?

q Can software be tested without com-
plex testing or special test equipment?

q Is a single group in one location
developing the system?

q Are subcontractors reliable and
proven?

q Is all project work being done by
groups over which you have control?

q Are development and support teams
all collocated at one site?

q Is the project team accustomed to
working on an effort of this size (nei-
ther bigger nor smaller)?

Summary
Project managers recognize and accept
the fact that risk is inherent in any pro-
ject. The most successful project man-
agers choose to deal proactively with risk.
They carefully analyze future project
events and past projects to identify
potential risks. Once risks are identified,
managers take steps to reduce their prob-
ability or reduce the impact associated
with them by establishing and following a

Figure 3: Defense Acquisition University Assessment Model [4]

Figure 4: Risk Handling Process

Select ImplementIdentify Evaluate Mitigation
Options

Figure 4: Risk Handling Process



Understanding Risk Management

February 2005 www.stsc.hill.af.mil 7

rigorous process, which involves the
entire project team as well as outside
experts. Risk management should include
hardware, software, integration issues,
and the human element. A risk manage-
ment process includes planning, assess-
ment, handling, monitoring, and docu-
mentation. Risk is a product of the
uncertainty of future events and is a part
of all activity. Learning to balance its pos-
sible negative consequences with its
potential benefits is the key to successful
risk management.u

References
1. Software Technology Support Center.

“Life Cycle Software Project Manage-
ment.” Project Initiation. Hill Air
Force Base, UT, 9 Oct. 2001.

2. Department of Defense. “Risk Man-
agement Guide for DoD Acqui-
sition.” Washington, D.C.: DoD Feb.
2001: Chap. 2 <www.dsmc.dsm.mil/
pubs/gdbks/r isk_management .
htm>.

3. Higuera, Ron, and Yacov Haimes.
“Software Risk Management.” Pitts-
burgh, PA: Software Engineering
Institute, 28 June 1996 <www.sei.
cmu.edu/publications/documents/
96.reports/96.tr.012.html>.

4. Department of Defense. “Risk Man-
agement Guide for DoD Acqui-
sition.” Washington, D.C.: DoD, Feb.
2001: Appendix B <www.dsmc.dsm.
mil/pubs/gdbks/risk_management.
htm>.

5. Arizona State University. “Question
List for Software Risk Identification
in the Classroom.” <www.eas.asu.
edu/~riskmgmt/qlist.html>.

6. Department of Energy. Risk Assess-
ment Questionnaire. <http://cio.
doe.gov/sqse/pm_risk.htm>.

About the Author

The Software Technology Support
Center (STSC) produced the “Guide-
lines for Successful Acquisition and
Management of Software-Intensive
Systems.” Visit the STSC Web site at
<www.stsc.hill.af.mil/resources/tech_
docs> to access all 17 chapters of this
document. The STSC is dedicated to
helping the Air Force and other U.S.
government organizations improve their
capability to buy and build software bet-
ter. The STSC provides hands-on assis-
tance in adopting effective technologies
for software-intensive systems. The
STSC helps organizations identify, evalu-
ate, and adopt technologies that improve
software product quality, production
efficiency, and predictability. Technology
is used in its broadest sense to include
processes, methods, techniques, and
tools that enhance human capability. The
STSC offers consulting services for soft-
ware process improvement, software
technology adoption, and software tech-
nology evaluation, including the
Capability Maturity Model® Integration,
software acquisition, project manage-
ment, risk management, cost and sched-
ule estimation, configuration manage-
ment, software measurement, and more.

Software Technology 
Support Center
6022 Fir AVE BLDG 1238
Hill AFB, UT 84056-5820
Phone: (801) 586-0154
DSN: 586-0154
E-mail: stsc.consulting@hill.af.mil

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:
SEPT2003 c DEFECT MANAGEMENT

OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW
DEC2003 c MANAGEMENT BASICS

MAR2004 c SW PROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.
JUN2004 c ASSESSMENT AND CERT.
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.



8 CROSSTALK The Journal of Defense Software Engineering February 2005

Most of the literature and government
guidance to date on project risk

management has been focused on indi-
vidual programs or systems. Yet systems
of systems are becoming more complex
and more commonplace in the United
States and abroad.

One system of systems that many
people in the United States have used
without recognizing it is the air traffic
control system. In the United States,
according to the General Accounting
Office (GAO):

… the en route centers (of the Air
Traffic Control system) alone rely
on over 50 systems to perform
mission-critical information pro-
cessing and display, navigation,
surveillance, communications, and
weather functions. [1] 

A current Department of Defense
(DoD) example of a complex system of
systems under development is the Future
Combat System (FCS). In building FCS,
the GAO says:

… Army leaders decided to

include interoperability with other
systems in the FCS design, and
design the individual FCS systems
to work as part of a networked
system of systems with a first-of-
a-kind network. [2] 

For FCS, the GAO writes:

… 14 major weapon systems or
platforms have to be designed and
integrated simultaneously and
within strict size and weight limita-
tions in less time than is typically
taken to develop, demonstrate, and
field a single system. At least 53
technologies that are considered
critical to achieving critical perfor-
mance capabilities will need to be
matured and integrated into the
system of systems. And the devel-
opment, demonstration, and pro-
duction of as many as 157 com-
plementary systems will need to be
synchronized with FCS content
and schedule. [3]

In this article, I will provide an
overview of the risk management process
and explore risks that are common to
many systems of systems (SOS) imple-

mentations along with recommendations
for addressing each risk.

Risk Management
Introduction
Risk management is the act or practice of
dealing with risk. It includes planning for
risk, assessing (identifying and analyzing)
risk issues, developing risk handling
options, monitoring risks to determine
how they have changed, and document-
ing the overall risk management program.
A simplified risk management process
flow is given in Figure 1 [4, 5].
• Risk planning is the process of

developing and documenting an orga-
nized, comprehensive, and interactive
strategy and methods for identifying
risk issues, performing risk analyses,
developing and implementing risk
handling plans, and monitoring the
performance of risk handling actions.

• Risk assessment is the process of
identifying and analyzing program
areas and critical technical process
risks to increase the likelihood of
meeting cost, performance, and
schedule objectives. Risk identification
is the process of examining the pro-
gram areas and each critical technical
process to identify and document the
associated risk. Risk analysis is the
process of examining each identified
risk issue or process to refine the
description of the risk, isolating the
cause and determining the effects.

• Risk handling is the process that
identifies, evaluates, selects, and
implements options in order to set
risk at acceptable levels given pro-
gram constraints and objectives. This
includes the specifics on what should
be done, when it should be accom-
plished, who is responsible, and what
are the associated cost and schedule.
Risk handling options include
assumption, avoidance, control (also

Risk Management for Systems of Systems©

Dr. Edmund H. Conrow
Risk-Services.Com

Systems of systems (SOS) present some unusual risk management challenges that often are not explicitly addressed, yet can
impact the resulting degree of system effectiveness. Potential risks associated with integrating a diverse set of systems and asso-
ciated hardware/hardware, hardware/software, and software/software often exist; these are made all the more difficult by
individual systems at different levels of maturity and potential risks that do not exist at the individual system level.
Established risk management processes may be in place for different systems, yet process steps and associated tools and tech-
niques may not be compatible. This article briefly examines some key SOS risk management process issues together with meth-
ods for better implementing risk management on such programs.

© Copyright 2005 by Edmund H. Conrow. All Rights
Reserved.

Feedback

Risk Documentation

Risk
Analysis

Risk
Identification

Risk
Planning

Risk
Assessment

Risk
Handling

Risk
Monitoring

Figure 1: Risk Management Process



February 2005 www.stsc.hill.af.mil 9

Risk Management for Systems of Systems

known as mitigation), and transfer.
The most desirable handling option is
selected and a specific implementa-
tion approach is then developed for
this option and documented in a risk-
handling plan.

• Risk monitoring is the process that
systematically tracks and evaluates the
performance of risk handling actions
against established metrics through-
out the acquisition process, and pro-
vides inputs to update risk-handling
strategies as appropriate. Risk moni-
toring also provides risk-related infor-
mation to the other processing steps
via the feedback function (as illustrat-
ed in Figure 1).

• Risk documentation is recording,
maintaining, and reporting assess-
ments; handling analysis and plans;
and monitoring results. It includes all
plans, reports for the program man-
ager and decision authorities, and
reporting forms that may be internal
to the program.
While the above items (with the

exception of risk documentation) are
related to specific process steps, it is
equally important that risk management
is properly implemented following
appropriate human and organizational
behavioral considerations. For example,
both top-down (program manager lead)
and bottom-up (worker-level daily perfor-
mance) are necessary to provide a suit-
able environment for effective risk man-
agement. It is all too common that upper
management is disinterested in risk man-
agement or sends mixed messages to
working-level personnel. Yet, without
working-level personnel assimilating risk
management principles into their daily
job function, it will be difficult at best to
have successful risk management.

In general, it is more important and
more difficult to create the proper culture
on a program to inculcate risk manage-
ment than it is to master the tools and
techniques for the process steps.

System-of-System Issues
I will now briefly discuss seven relatively
common issues for SOS risk manage-
ment [6], which are given in Table 1. (See
Boehm, et. al. [7] for a discussion of
some software-intensive SOS risks.) The
format used in each case first describes
and frames the issue and is then followed
by recommended approaches for ad-
dressing each issue.

1. Multiple Stakeholders
Multiple buyers, sellers, and other stake-
holders will generally exist, and the

behavior of each group is not homoge-
neous. The objective function associated
with cost, performance, and schedule
(CPS) will be different for different par-
ties. These differences will often lead to
contention and potentially sub-optimal
design solutions, funding allocation,
schedule priority, and increased risk [8].

For SOS, multiple prime contractors
may exist at the individual system level;
these contractors are both buyers from
lower-level contractors on an individual
program and sellers to both the systems
of systems lead contractor and the gov-
ernment. Hence, a variety of objective
functions will typically exist at the systems
of systems level and reflect different pref-
erences for CPS and associated risk.

In the development of government
systems, both the buyer (e.g., govern-
ment) and seller (e.g., contractor) typically
favor increased levels of performance,
while the buyer often favors decreased
cost and schedule, and the seller favors
increased cost and schedule. A common
result of this imbalance in both DoD and
NASA programs is that performance is
the dominant variable and cost and/or
schedule are adjusted during the course of
the development phase to meet perfor-
mance requirements [8]. Issues resulting
from sub-optimal CPS trades often trans-
late to considerable risk when they are
discovered late in the development phase
because there is limited ability to effi-
ciently modify designs, etc.

One method to alleviate such prob-
lems is to systematically investigate CPS
and associated risk in all CPS trades, not
just one or two of the three dimensions.
Furthermore, the three dimensions of
risk should be integrated along with CPS
trades to yield a cohesive representation
of the potential solution space. In sys-
tems of systems, it is common to find
marginal risk management focused on

technical risk, and weak cost- and sched-
ule-related risk management.

An aid to effective risk management is
to have suitable CPS risk management
implementation and integration through a
central risk management process for each
program, as well as at the SOS level. (It is
surprisingly common to find separate
pockets of CPS risk management within a
large-scale program, often with limited
program-level integration. This behavior
is counter-productive and can lead to
weak risk management.) 

In addition, differences in the party’s
objective functions and resulting behav-
iors should be recognized to avoid surpris-
es, balance risk across systems, and to help
facilitate mutual awareness and the devel-
opment of potential solutions prior to
risk issues becoming problems later in the
program. (Note: a problem is defined
here as a risk issue that has occurred
[probability = 1].) 

For example, a system under develop-
ment by one government organization
often reported risk levels for challenging
subsystems that were lower than similar
subsystems under development by a dif-
ferent organization. (Here, both systems
were in competition with each other and
only one would potentially be deployed.)
After some time, the government organi-
zation responsible for SOS integration
instructed the two other government
organizations that credible risk analysis
results and risk handling plans were far
more important than artificially low risk
scores.

This message was received by both gov-
ernment developmental organizations,
and helped to level the playing field
between them. This led to increased risk
management effectiveness at the SOS
organization because fewer resources
were needed to evaluate and correct the
imbalance in risk analysis results.

Table 1: Common Systems of Systems Risk Management Issues



10 CROSSTALK The Journal of Defense Software Engineering February 2005

Risk Management

2. Multiple Risk Management
Processes
Multiple risk management processes will
generally exist for SOS. These processes
should be, but are often not highly com-
patible. Without particular attention, this
can contribute to weak or ineffective risk
management. Risk management differ-
ences between systems – and possibly
organizations associated with a given sys-
tem – will likely occur in risk identifica-
tion and analysis methodology, and the
development of risk-handling plans.
These process and associated implemen-
tation differences can lead to omission of
some risks as well as the exaggeration of
other risks.

I will now briefly address some com-
mon issues associated with different risk
management process steps when multiple
risk management processes exist.

Unstructured and Incomplete Risk
Identification
Risk identification is often performed in
an unstructured manner and typically
uses a small subset of available approach-
es. The result of these shortcomings is
that potential risk issues can be missed
and may become problems later in the
program.

At least six different risk identifica-
tion approaches exist such as those based
upon the work breakdown structure
(WBS), requirements flow-down, and key
process evaluation; each of these
approaches should be considered [5].
Typically only a few of these methods are
used on a large-scale program, yet each
should be considered. This shortfall may
in part be related to an organization’s risk
management heritage. That is, organiza-
tions with a strong focus on process-level
risks (e.g., design and test) may have lim-
ited experience with the WBS approach.

In addition, for SOS, a methodology
should be used to perform a top-level
risk evaluation for each individual pro-
gram as well as across the programs for
items not associated with lower WBS lev-
els. For example, a program is top-level
(WBS 1) for its system. However, a par-
ticular program is likely second- or third-
level WBS for SOS (whose top-level is
WBS 1). Some candidate risks may exist
at higher WBS levels (e.g., 1-3) and may
not manifest in an easily recognizable
manner or even exist at lower WBS levels.

Other potential risks may be better
addressed across programs at a top level
within the SOS and not at lower levels
within the individual systems. For exam-
ple, networking architectures should be
addressed at the SOS level (top-down).

Differences in Risk Analysis
Methodologies
A variety of risk analysis methodologies
will typically exist for SOS. This can be
problematic since variations in the result-
ing risk levels for the same item evaluat-
ed by different organizations or across
different programs may be non-trivial
(e.g., vary by one or more risk levels).
When different organizations evaluate
the same risk issue, a significant differ-
ence in estimated risk level may result due
to differences in how they perceive risk
(e.g., risk tolerance) as well as from using
different methodologies.

The organization(s) responsible at the
SOS level may have to develop a Rosetta
stone to compare risk analysis results
between organizations and translate

results at a lower WBS level to a higher
WBS level. Likewise, such organizations
should evaluate key risks at the individual
program level as well as across programs
when possible to ensure that appropriate
and consistent risk levels exist.

Unfocused Risk Handling Strategies
Risk handling strategies are often devel-
oped in an ad hoc manner and without
regard to strategies in place for other
risks. A focused risk handling strategy
should be used for each risk that man-
agement (e.g., risk management board)
chooses to address. The strategy should
evaluate possible options (assumption,
avoidance, control, transfer), select the
best option, and then develop the most
appropriate implementation approach for
that option.

This approach should be used at both
the individual program and SOS level. In
addition, a top-level examination of risk
handling strategies across programs
should be performed to identify resources

that may be applied from one strategy to
another, as well as potential constraints
across strategies on the quantity and tim-
ing of resources available. (See the related
discussion in the “Common Technical
Risk Classes” section.)

3. Long Life Cycles
SOS can be expected to have long life
cycles, ranging from many years to
decades. The individual programs may
have different levels of maturity varying
from early development to operations/
support. The resulting non-uniform
acquisition maturity potentially compli-
cates risk management at the SOS level.
For example, the resulting interactions
and integration of some programs in
early to mid development and others
fielded (thus in operations and mainte-
nance) are often with risk.

Conversely, fielded systems often
pose constraints on developmental sys-
tems from a SOS perspective because of
the integration and operations framework
that is developed. However, developmen-
tal systems may impact fielded systems
within a system of systems due to unan-
ticipated programmatic and/or technical
issues that may result.

The risk management process should
be tailored to each program within the
systems of systems and each correspond-
ing program phase. In addition, the risk
management process at the SOS level
should not be static but should evolve
over time as individual program maturity
and the overall level of integration
increases, as new systems are added and
as additional data is available.

Risk issues that exist and the level of
information available about specific risks
will vary from early development to oper-
ations/support. For example, non-trivial,
architecture-level design and technology
problems may manifest in early to mid
development, while manufacturing and
integration problems may be present in
mid to later development, and support-
related problems may follow system
deployment.

Each of the resulting risk issues
should be evaluated in the early develop-
ment phase as part of the trade process
and in later program phases as appropri-
ate in order to address them before they
become problems. The risk handling plan
content and implementation schedule
will vary with acquisition, resource avail-
ability, and time-urgency considerations
during the course of the acquisition
cycle. In addition, relatively little informa-
tion may exist for some risk issues early
in the development phase, and the result-

“In general, it is more
important and more
difficult to create the
proper culture on a

program to inculcate risk
management than it is to

master the tools and
techniques for the
process steps.”



Risk Management for Systems of Systems

February 2005 www.stsc.hill.af.mil 11

ing uncertainty in the estimated risk level
may be non-trivial. The quality of infor-
mation available and the level of certain-
ty should increase during the course of
the program and lead to improved risk
handling actions (all else held constant).

4. Common Technical Risk Classes
While technical risks are often examined,
evaluated, and managed separately, a
finite number of technical risk classes
often exist in a given program. Grouping
technical risks into risk classes can pro-
vide program decision-makers with
insight into potential strengths/surpluses
and weaknesses/shortfalls associated
with processes, personnel, other
resources, etc.

Some common technical risk classes
often include but are not limited to
design, functional performance, integra-
tion, resource availability, support, and
technology. Broadly speaking, many types
of risk outside of pure programmatic
entities (e.g., cost and schedule) may be
classified as technical risk. Technical risk
classes can exist from low WBS levels to
the program level (WBS level 1) or SOS
level. It is common that several of these
risk classes are not explicitly evaluated
during the course of the program. I will
now briefly discuss how common techni-
cal risk classes can be addressed in differ-
ent risk management process steps.

Risk Planning
At the individual program level as well as
the SOS level, potential risk classes
should be explicitly identified as part of
the risk planning process, included in the
Risk Management Plan (or equivalent),
and updated as warranted. This is impor-
tant since the common practice of select-
ing risk classes during risk identification
oftentimes leads to some risk classes and
corresponding candidate risks being
omitted.

Risk Identification
A risk identification framework should be
used that incorporates standard tech-
niques (e.g., WBS level, requirements
flow-down, and key processes) that are
selected and adjusted by risk class and
program phase. For example, an initial
review of key processes (e.g., design,
manufacturing, and test) should be per-
formed early in the development phase to
identify potential risks. This review
should be updated and expanded during
the development phase to provide suffi-
cient opportunity to address shortfalls
and increase maturity prior to critical pro-
gram need.

Technology risk, however, is better
addressed at the WBS level. This evalua-
tion should be initiated early in the devel-
opment phase and continued during the
development phase until the technology
has matured to a satisfactory degree.

Risk Analysis
Tailored risk analysis methodologies
should be available for specific risk class-
es. For example, it is generally not suffi-
cient to use a single, generic, probability
of occurrence scale (e.g., very high = E
to very low = A where E > A) when per-
forming a technical risk analysis because
many risk issues (e.g., development matu-
rity) cannot be readily framed into a ques-
tion associated with probability level.

For example, if a hardware unit in the
early developmental stage exists and a
fully operational unit is desired using a
generic probability of occurrence scale
(as above), this can lead to substantial
uncertainty as to what level should be
selected, and potentially erroneous
results. In this particular example, ordinal
probability of occurrence scales tailored
to unit maturity (e.g., scientific research =
E to fully operational = A) and other
potential risk classes (e.g., manufacturing)
are often much better suited and can help
reduce the level of misscoring and pro-
vide more consistent results.

(Note: maturity-based scales, such as
Technology Readiness Levels [TRL], do not
estimate risk, but only one component of
the probability of occurrence term. Risk is
the product or combination of probabili-
ty of occurrence and consequence of
occurrence. Since TRL and other such

scales are unrelated to consequence of
occurrence, they do not in and of them-
selves provide an estimate of risk.)

Risk Handling
Risk handling strategies should be over-
laid for common risk classes across WBS
levels at the individual program level and
the SOS level to identify potential
resource issues in a timely manner. For
example, if high-performance custom
microelectronic components are needed
there may be a limited number of suppli-
ers capable of developing and fabricating
such parts. If individual orders are exam-
ined within a program, the resulting num-
ber of different devices may be small, but
when examined across programs the
quantity may lead to supplier resource
shortfalls (e.g., workstations, software
licenses, trained personnel, and fabrica-
tion, test, and screening capacity) and
contention for these resources.

At the individual program level, there
may be no apparent risk, but when
viewed at the SOS level the resource-
related risk may be considerable. This is
all the more important if the supplier has
fundamental process difficulties in
design, testing, or manufacturing because
an issue affecting parts for one program
may also impact the SOS level or in some
cases an entire industry. In such cases, it
may be necessary to understand common
resources at the supplier level and priori-
tize potential needs across the program,
SOS, or even industry to reduce the level
of potential risk whenever possible.

5. Integration Risk
Integration risk is present on many types
of programs and is pervasive on SOS by
its very nature, yet is often not explicitly
evaluated. Hardware/hardware, hard-
ware/software, and software/software
are common forms of integration risk.
Multiple layers of integration risk are also
common, from low to high WBS levels
(e.g., 5 to 1) but also across programs for
systems of systems. In addition, new
forms of integration risk such as net-
based integration issues not commonly
seen at the individual program level may
occur at the SOS level.

The potential level of integration risk
is often substantial because of a tenden-
cy to underestimate integration difficulty,
and simultaneously overestimate the
maturity of items that require integration.
This is all the more problematic when
integration risks manifest late in a pro-
gram because the ability to trade CPS is
typically limited versus manifesting earli-
er in the program. The result for govern-

“... the risk management
process at the SOS level
should not be static but
should evolve over time
as individual program

maturity and the overall
level of integration
increases, as new

systems are added and
as additional data is

available.”



Risk Management

12 CROSSTALK The Journal of Defense Software Engineering February 2005

ment programs (e.g., DoD and NASA) is
often non-trivial cost and/or schedule
growth, while performance degradation
are typically small [8].

One helpful strategy for alleviating
integration risk is to increase attention to
potential integration issues throughout
the life cycle – beginning in early devel-
opment rather than focusing on them late
in the development process. This can
include using adaptable acquisition mod-
els (e.g., spiral), carefully developed inter-
face control documents, and early proto-
typing and perceptive testing to identify
potential issues early when there is
greater flexibility to trade CPS.

In addition, the transfer risk handling
option should be considered for integra-
tion issues – do not simply default to the
control (mitigation) option. Oftentimes,
the transfer option is thought to be limit-
ed to insurance, guarantees, warranties,
and similar approaches when it also
encompasses a variety of other methods
such as transferring risk between inter-
faces, hardware and software, different
organizations (e.g., prime versus subcon-
tractor), and even programs. In some
cases, this option may alleviate the level
of potential risk (e.g., an inexperienced
contractor passing real-time software
development to a teammate with consid-
erable experience in this area), so long as
the recipient actively works the potential
risk rather than passively accepting it.

6. Functional Performance Risk
SOS level functional performance risk
may include the ability to demonstrate
that desired functions or requirements
can be met to a specified performance
level. This is a different and somewhat
converse concept than design risk, which
generally assumes that a requirement can
be met by the nature of the design.
Functional performance risk is rarely esti-
mated, yet functional performance short-
falls can translate to problems late in the
program if insufficient progress has been
made in demonstrating the performance
level of key functions that can be
achieved.

The probability of occurrence term
of functional performance is often matu-
rity based – and scales that incorporate,
for example, unverified analytic modeling
to in-field testing from less to more
mature might represent a coarse ordinal
sequence for use. Initial modeling, simu-
lation, and emulation followed by appro-
priate incremental demonstrations, pro-
totyping, and testing can be helpful
throughout the development and integra-
tion cycle to potentially reduce function-

al performance risk to an acceptable
level. Whenever possible, avoid an all or
nothing demonstration and testing
approach late in the program since this
will often fall short of achieving neces-
sary performance levels and permit little
time for recovery versus an incremental
approach maintained during the develop-
ment phase.

7. Interface Complexity
Complex hardware and software inter-
faces will often exist within individual
programs as well as in SOS. While there
may be a desire to explicitly treat com-
plexity in a risk analysis, it is generally dif-
ficult to accurately relate complexity to
risk. Furthermore, efforts to estimate the
risk of interface complexity directly may
lead to uncertain, subjective, and/or erro-
neous results.

Interface complexity is typically relat-
ed to the probability of occurrence term
of risk and unrelated to consequence of
occurrence. However, it is generally very
difficult to develop specific relationships
between complexity and probability of
occurrence. While the notion that more
complex interfaces should have a higher
probability of occurrence (all else held
constant) is often reasonable from a qual-
itative or ordinal sense, it may not be pos-
sible to confidently say how much higher
the resulting probability level is than an
interface with a lower complexity level,
and inaccurate and/or uncertain esti-
mates may result. Instead, the analyst
should consider whether or not interface
complexity could be mapped to other
technical risk classes that can then be
more readily evaluated. These risk classes
can include, but are not limited to, design,
integration, and support risk. (See the
discussion associated with integration
risk.)

Conclusion
Complex technical and implementation
issues will exist for SOS that may be far
more difficult to deal with than for sim-
pler implementations or individual pro-
grams. Risk management can play a key
role in addressing many such issues. The
seven risk management issues and rec-
ommendations for addressing them pre-
sented here are applicable to a variety of
SOS and provide a starting point to the
reader to apply to their programs.u

References
1. United States General Accounting

Office. Air Traffic Control. GAO/
AIMD-97-30. Washington, DC:
GAO, Feb. 1997: 20.

2. United States General Accounting
Office. FCS Program Issues. GAO-
03-1010R. Washington, DC: GAO, 13
Aug. 2003: 2.

3. United States General Accounting
Office. The Army’s Future Combat
Systems’ Features, Risks, and
Alternatives. GAO-04-635T. Wash-
ington, D.C.: GAO, 1 Apr. 2004: 9.

4. Department of Defense. Risk
Management Guide to DoD Acqui-
sition. 5th ed. Vers. 2.0 Ft. Belvoir,
VA: Defense Acquisition University,
June 2003 <www.dau.mil/pubs/
gdbks/risk_management.asp>.

5. Conrow, Edmund H. Effective Risk
Management: Some Keys to Success.
2nd ed. Reston, VA: American
Institute of Aeronautics and Astro-
nautics, 1 June 2003.

6. Conrow, Edmund H. “Risk Manage-
ment for Systems of Systems.” 2004
Systems and Software Technology
Conference, Salt Lake City, UT, 21
Apr. 2004.

7. Boehm, Barry, A. Winsor Brown,
Victor Basili, and Richard Turner.
“Spiral Acquisition of Software-
Intensive Systems of Systems.”
CrossTalk May 2004: 4-9 <www.
stsc.hill.af.mil/crosstalk/2004/05/04
05boehm.html>.

8. Conrow, Edmund H. “Some Long-
Term Issues and Impediments Af-
fecting Military Systems Acquisition
Reform.” Acquisition Review Quar-
terly 2.3 (Summer 1995): 199-212.

About the Author

Edmund H. Conrow,
Ph.D., is a risk manage-
ment consultant to gov-
ernment and industry
with more than 20 years
experience. He has help-

ed develop much of the Department of
Defense’s best practices on risk manage-
ment and has also served as a risk man-
ager on a variety of programs. Conrow is
the author of “Effective Risk Manage-
ment: Some Keys to Success.” He has
doctorate degrees in both general engi-
neering and policy analysis.

Risk-Services.Com
P. O. Box 1125
Redondo Beach, CA 90278
Phone: (310) 374-7975
E-mail: info@risk-services.com



February 2005 www.stsc.hill.af.mil 13

In this article, the term object-oriented
(OO) technology refers to OO develop-

ment processes and methods, object-relat-
ed standards, and associated products and
tools from third-party vendors. Enter-
prises that develop software are looking to
OO as a means to achieve their strategic
business objectives. They expect that OO
will enable them to build complex systems
of superior quality with reduced develop-
ment time and costs, while providing long-
term benefits such as maintainability,
reusability, and extensibility.

If, in fact, OO has been in use for a
relatively long period, then why is it still
necessary to explore OO-specific risks?
The simple answer can be found in R.L.
Glass’ 2002 article [1]. According to Glass,
the introduction of a technology is no
guarantee of effective use. Similar to OO,
other technologies such as fourth-genera-
tion languages and computer-assisted soft-
ware engineering tools were introduced
with great fanfare, but once the technolo-
gy was more thoroughly understood, the
benefits turned out to be far more modest
than originally claimed.

Also, OO risks are not the same as
those associated with the introduction of
any new technology. With respect to para-
digm scope, complexity, and depth, OO has
far-reaching consequences. For the project
manager, the decision is not simply whether
to apply OO to a particular project: The use
of OO permeates all aspects of develop-
ment. Based on business priorities, project
managers must determine the desired pene-
tration of OO concepts, the optimal inser-
tion order, and whether the replacement of

legacy languages and tools is justified.

Object-Oriented Technology
In his 1995 book [2], Bertrand Meyer pro-
vides a sound overview of OO funda-
mentals. According to Meyer, software
construction embracing OO is structured
around the following concepts1.
• M1: A unique way to define architec-

ture and data structure instances.
• M2: Information hiding through

abstraction and encapsulation.
• M3: Inheritance to organize related

elements.
• M4: Polymorphism to perform opera-

tions that can automatically adapt to
the type of structure they operate on.

• M5: Specialized analysis and design
methods.

• M6: OO languages.
• M7: Environments that facilitate the

creation of OO systems.
• M8: Design by Contract, a powerful tech-

nique to circumvent module boundary
and interface problems.

• M9: Memory management that can
automatically reclaim unused memory.

• M10: Distributed objects to facilitate
the creation of powerful distributed
systems.

• M11: Object databases to move be-
yond the data-type limitations of rela-
tional database management systems.
Please note that this article is not

intended to be a tutorial on OO; rather, it
will examine risk implications associated
with all of these concepts. It is assumed
that the reader is familiar with the basics.

Risk Management
Risk management is acknowledged as a
critical process of project management,
and has received more and more attention
since the 1980s. For example, in the

Software Engineering Institute-developed2

process improvement framework, during
the transition from the Capability Maturity
Model for Software® (SW-CMM®) to
CMM IntegrationSM (CMMI®), risk man-
agement was elevated from a recommend-
ed practice to a formal, independent
process area. Nevertheless, to accommo-
date a broader audience, the definitions
used in the following discussion are based
on IEEE-STD-1540-2001 [3] and not
CMMI materials.

Risk is defined as a potential problem,
an event, hazard, threat, or situation with
undesirable consequences. The non-deter-
ministic nature of risk makes risk manage-
ment a special challenge for the project
manager. During project planning, we
might be tempted to try to avoid risks
altogether, but relying strictly on avoid-
ance as a risk mitigation technique is usu-
ally not adequate. The success of a project
depends primarily on the project manag-
er’s ability to manage the delicate balance
between opportunity and risk.
Unfortunately, when all risk goes away, so
does opportunity. That is why successful
project management practices include risk
management, a continuous process for
systematically addressing risk throughout
the life cycle of a product or service.

According to IEEE-STD-1540-2001,
the risk management process consists of
the following activities:
1. Plan and implement risk management.
2. Manage the project risk profile3.
3. Perform risk analysis.
4. Perform risk monitoring.
5. Perform risk treatment.
6. Evaluate risk management processes.

The focus of this article is risk identi-
fication, a critical aspect of risk analysis.
Risk identification, similar to all other ele-
ments of continuous risk management, is

Inherent Risks in Object-Oriented Development©

Dr. Peter Hantos
The Aerospace Corporation 

Object orientation has been in existence since the late 1970s. During the 1990s, however, on the basis of various claims that
it was a dramatic, new software engineering approach, object-oriented software development became pervasive. Currently, most
new software projects use object-oriented (OO) techniques to various extents. The persistence of schedule slips and cost over-
runs, particularly in the case of the development of large-scale, software-intensive systems, raises the need for revisiting the
basics and exploring the inherent risks that OO technology might contribute to the overall risk profile of a project. In this
article, Bertrand Meyer’s classic OO technology concepts are mapped into Barry Boehm’s Top 10 methodology-neutral soft-
ware risks to illustrate potential areas of exposure. Recent developments in OO technology, such as Java, Use Cases, or the
Unified Modeling Language fit well into this framework and are included as examples. The systematic approach introduced
will allow project managers to better understand the cost/benefit aspects of applying OO technology, and to align their project
management strategies more successfully with the organization’s business goals.

© 2004-2005 The Aerospace Corporation.
® Capability Maturity Model, CMM, and CMMI are regis-

tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

SM CMM Integration is a service mark of Carnegie Mellon
University.



14 CROSSTALK The Journal of Defense Software Engineering February 2005

not a one-time activity. Changes in the risk
management context and changing man-
agement assumptions represent major risk
sources, and need to be continuously
monitored as well. IEEE-STD-1540-2001
does not prescribe how risks should be
identified, but it suggests numerous meth-
ods, including the use of risk question-
naires or brainstorming.

A specialized example of a risk ques-
tionnaire, to be used in a Java 2 Enterprise
Edition (J2EE) environment, is presented
in [4]. Most risk questionnaires are the
result of some sort of brainstorming
effort; in most cases, the authors inter-
viewed experienced project managers
about their past projects and, after some
filtering and processing, they turn the
structured risk statements into questions
or checklists. For an example of a system-
atic approach to develop a checklist, see
Tony Moynihan’s article [5].

Barry Boehm first published his Top
10 Software Risks in 1989 [6], and pre-
sented an updated list in his 1995 software
engineering course with surprisingly few
modifications that were based on feed-
back from the University of Southern
California’s Center for Software
Engineering Industrial Affiliate compa-
nies. (For a published version of the sec-
ond list please see [7].) Essentially all
items, although sometimes named slightly
differently, still represented major risk
sources, and the name changes can be
attributed to changes in popular terminol-
ogy and not fundamental root causes.

Identifying OO Risks
Consolidating Boehm’s Risk Sources
For the discussion in this article, Boehm’s
list of Top Ten Software Risks will be
consolidated into eight risks as shown in
Figure 1. First, items on the 1989 list were
crosschecked with the 1995 list. Item No.
5, gold-plating, from the 1989 list is clearly a
requirements mismatch issue4. Finally, on
the 1995 list, for the sake of brevity,
requirements mismatch has also been
combined with user interface mismatch,

and commercial off-the-shelf (COTS)
issues with legacy software issues since
they have many similarities with respect to
root causes.

Mapping and Interpreting Meyer’s
OO Concepts
The objective of the following analysis is to
determine what OO concepts and prac-
tices are germane to risks viewed as signif-
icant by the software community. The key
to meeting this challenge is the use of well-
proven frameworks to inventory the essen-
tial attributes of OO technology and pro-
ject risks. Boehm’s risk identification check-
list was chosen because it is well accepted
in the software engineering community.

During the mapping process, we exam-
ined Boehm’s consolidated risk list item by
item and identified the corresponding, rel-
evant OO concepts. The results of this
mapping are summarized in Figure 2, and
a detailed discussion follows in the rest of
this article. The dots on Figure 2 represent
a relationship between the particular risk
item and the corresponding OO concept.
Arrows pointing to the risks signify the
influence of the selected OO concepts,
while arrows pointing to the OO concepts
relate to situations where the OO concepts
have a risk-mitigating – rather than risk-
triggering – effect.

Personnel Shortfalls (Risk B1)
Software development is a highly labor-
intensive process, and its success depends
primarily on the people in the organiza-
tion. Beyond well-known organizational
and political issues, several OO-specific
concerns need to be explored. The most
significant concerns are specialized skills
and experience, and that is why all OO
concepts are connected to this risk item as
shown in Figure 2.

The first issue is the right balance
between application domain knowledge
and OO knowledge. It is difficult to find
people skilled in both; hence, the collabo-
ration between project personnel with dif-
ferent skill bases is critical. The second

issue is the number and distribution of
available people. OO knowledge is rele-
vant for most members of the organiza-
tion, although not to the same extent. In
positions such as managers, architects,
developers, and testers, it is important that
all personnel have or acquire via training
the appropriate OO skills.

For example, to avoid personnel short-
falls, the executives themselves who create,
manage, or sponsor the development orga-
nization have to understand the essential
elements of OO even before staffing
starts for a project. While having prior OO
experience is an asset for managers, the
minimum requirement should be to have a
certain level of OO literacy. In fact,
Meyer’s book, which is used in this analy-
sis, is an excellent tool for this purpose, i.e.,
educating managers in OO fundamentals5.
The seeding of all teams with OO mentors
is also a good approach to distribute OO
domain knowledge and to both jump-start
and facilitate OO development.

Not surprisingly, most other sources
that have analyzed OO migration have
focused on the human dimension as well.
Two of the three key items discussed in [4]
deal with learning curve and training, and
[4] contains further references to other
authors addressing the same concern [8, 9].

Personnel issues play an important role
in the team context as well. OO requires a
new way of thinking and moving away
from outdated approaches like using func-
tional decomposition for architecting sys-
tems or implementing obsolete program-
ming constructs. For teams with a long
heritage of using legacy approaches, the
paradigm shift is particularly difficult. In
fact, sometimes we have observed a quiet,
passive resistance to OO methods where the
people attempted to fake the usage of new
methods but at the same time were con-
tinuing business as usual. A good example
for this anomaly is writing C-like pro-
grams with the use of a C++ compiler.

Unrealistic Schedules, Budgets, and
Process (Risk B2) 
Unrealistic expectations, lack of manage-
ment appreciation for the necessary skills,
and the difficulty of the paradigm shift
will lead to unrealistic schedules. Similarly,
underestimating the time and cost of nec-
essary training would result in unrealistic
schedules and budget. Nevertheless, some
key OO items specifically contribute to
this problem. Based on E. Flanagan’s sum-
mary [10], most of the time OO projects
are introduced on the following grounds:
• OO is better at organizing inherent

complexity, and abstract data types
make it easier to model the application.

1989 1995

Figure 1: Consolidating Boehm’s Top 10 Software Risks List

Risk Management



Inherent Risks in Object-Oriented Development

February 2005 www.stsc.hill.af.mil 15

(These statements are building on
Concept M1, labeled Architecture and
Instances.)

• OO systems are more resilient to
change due to encapsulation and data
hiding (per concept M2).

• OO design often results in smaller sys-
tems because of reuse, resulting in over-
all effort savings. This higher level of
reuse in OO systems is attributed to the
inheritance feature (per concept M3).

• It is easier to evolve OO systems over
time because of polymorphism (per
concept M4).
However, we can also learn from [5]

that, particularly when OO is introduced
for the first time, expectations might be
exaggerated, and frequently the impact of
potential costs and risks are minimized to
claim maximized payback. For example, it
might not be made clear to the sponsoring
executives that under certain circum-
stances it would take several years for just
the previously mentioned four benefits of
OO to be fully realized. The background
of this problem is two-fold. First, building
class-libraries is time consuming, or, in
case of purchase, they represent a major,
up-front investment. Second, to achieve
high return on investment, reuse must
take place in a very large project or in mul-
tiple projects.

One of the side effects of the OO
approach is that the design process
becomes more important than it was in
non-OO projects. Due to encapsulation,
data hiding, and reuse, the design com-
plexity moves out of the code space into
the design space. The increased design
complexity has testing consequences as
well. Even if incremental integration is
applied, more sophisticated integration
test suites need to be created to test sys-
tems with a potentially large number of
highly coupled objects.

It is also an unfortunate fact that while
the OO concepts identified make system
comprehension easier during analysis and
design, they cause testing and debugging
to become more difficult, since now all
debugging methodologies and tools have
to work with those abstract data types and
instances. Those organizations that
assume that testing OO is like testing any
other software are in for a big surprise. R.
Binder makes a powerful case for this
argument in his article [11]. According to
Binder, it is a common myth that only
Black Box6 testing is needed and OO
implementation specifics are unimportant.
In reality, OO code structure matters,
because inheritance, encapsulation, and
polymorphism present opportunities for
errors that do not exist in conventional

languages. Also, OO has led to new points
of view and representations, and the test
design techniques that extract test cases
from these representations must also
reflect the paradigm change.

Shortfalls in COTS, External
Components, and Legacy Software
(Risk B3)
Using COTS and other externally devel-
oped or legacy components in OO pre-
sents particular difficulties for structural
comprehension and architectural design.
These external components, their archi-
tecture, interfaces, and documentation are
not necessarily consistent with the class
and object architecture, communication
mechanisms, and view models of the sys-
tem being developed.

A particular OO problem in this area
is the interface of Object Database imple-
mentations with traditional Relational
Database management systems. The prob-
lem may deepen in situations where multi-
ple new technologies merge, for example,
in the use of Java-specific object-oriented
COTS products (Enterprise Java Beans,
Java Message Service, etc.) to develop
application services on standard IBM,
Sun, and Oracle platforms.

Requirements or User Interface
Mismatch (Risk B4)
The OO source of risk is the fact that use
cases are used almost exclusively to devel-
op requirements in OO systems.
However, use cases only capture function-
al requirements so additional process
steps need to be included to develop and
implement quality-related7, non-functional
requirements. An interesting source of
Graphical User Interface mismatch is that
the Use Case methodology, though well

suited for capturing the dynamism of
changing screens, is inappropriate for rep-
resenting screen details.

Shortfalls in Architecture, Performance,
and Quality (Risk B5)
This is the area where OO approaches
present a controversial impact. Data
abstraction, encapsulation, polymor-
phism, and the use of distributed objects,
while increasing architectural clarity, all
come with a price: substantial overhead
due to the introduced layers of indirec-
tion. Unless the system is carefully archi-
tected and sound performance engineer-
ing practices [12] are implemented from
the beginning, satisfying both perfor-
mance and quality objectives becomes dif-
ficult. All of these issues boil down to the
earlier mentioned design challenge.
Particularly in the case of real-time appli-
cations, the system architect must careful-
ly determine the optimal system cohesion.
Most real-time performance issues can be
resolved if you are willing to suffer
increased coupling and the consequent
loss of flexibility.

Another sensitive part of OO systems
is memory management in general and the
implementation of garbage collection in
particular. Garbage collection is an inte-
gral part of most OO run-time environ-
ments. It is a popular technique to ensure
that memory blocks that were dynamically
allocated by the programmer are released
and returned to the free memory pool
when they are no longer needed. A typical
OO application of this feature is the
dynamic creation and destruction of
objects. The problem is that in conven-
tional systems, the execution of the main
process needs to be interrupted while the
garbage collector does its job. This ran-

Meyer's OO Concepts

A
rc

h
it

ec
tu

re
an

d
In

st
an

ce
s

A
b

st
ra

ct
io

n
an

d
E

n
ca

p
su

la
ti

o
n

In
h

er
it

an
ce

P
o

ly
m

o
rp

h
is

m

A
n

al
ys

is
/D

es
ig

n
M

et
h

o
d

s

O
O

L
an

g
u

ag
es

O
O

E
n

vi
ro

n
m

en
ts

D
es

ig
n

b
y

C
o

n
tr

ac
t

M
em

o
ry

M
an

ag
em

en
t

D
is

tr
ib

u
te

d
O

b
je

ct
s

O
b

je
ct

D
at

ab
as

es

Boehm's Consolidated
Risk List M

1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

B1

B2

B3

B4

B5

B6

B8

Personnel Shortfalls

Unrealistic Schedules, Budgets, Process

Shortfalls in COTS, External Components, Legacy Software

Requirements or User Interface Mismatch

Shortfalls in Architecture, Performance, Quality

Continuing Stream of Requirement Changes

Straining Computer Science

Shortfalls in Externally Performed Tasks B7

Figure 2: Mapping Meyer’s OO Concepts Into Boehm’s Consolidated Risk List



16 CROSSTALK The Journal of Defense Software Engineering February 2005

domly invoked process with variable dura-
tions disrupts the real-time behavior of
the system.

There are two different approaches to
the mitigation of this risk. In the case of
real-time OO systems, prudent program-
ming practice should include explicit
object creation and destruction to elimi-
nate the dependency on garbage collec-
tion. Another solution is the implementa-
tion of the garbage collector via multi-
threading. However, multithreading is a
difficult, advanced concept that itself can
be the source of numerous risks. For a
complete discussion of multithreading
implementation pitfalls in Java, see [13].

Finally, a common, OO-related short-
fall of architecture pertains to reuse. Most
software development organizations
moved to OO because engineering man-
agers believed that it would lead to signif-
icant reuse. Unfortunately, as the authors
of [14] point out, without an explicit reuse
agenda and a systematic, reuse-directed
software process, most of these OO
efforts did not lead to successful, large-
scale reuse. Ironically, in some other situa-
tions, even the presence of a reuse-driven
agenda (platform-based product line
development) is no guarantee of success if
reuse becomes a slogan and senior man-
agement expectations are mishandled. In a
product line, the participating products
share (reuse) architecture and common
components, and the implementation of
an effective, strategic reuse process
becomes a key enabler in achieving low-
cost and high-quality products in a fast,
efficient, and predictable way [15].

As discussed earlier, OO promises a
high level of reuse via the inheritance fea-
ture and the use of class libraries.
Nevertheless, OO’s practical reuse is not
as supportive of the described strategic
reuse initiatives as one might like to see,
and even the full and uncompromising
implementation of OO does not guaran-
tee the satisfaction of any aspects of the
mentioned, reuse-centered corporate
architecture initiatives.

Continuing Stream of Requirement
Changes (Risk B6)
This risk is caused by customer behavior,
and the use of OO is not a contributing
factor. On the contrary, as it was pointed
out in Risk B2, OO architectural consider-
ations, encapsulation, and data hiding
increase the developed system’s resiliency
to requirements volatility.

Shortfalls in Externally Performed Tasks
(Risk B7)
Risk B7 is caused by contractor behavior,

and the use of OO does not play any role.
Nevertheless, similar to B6, the presence
of M1 and M2 OO concepts is an excel-
lent mitigating factor when these kinds of
problems arise.

Straining Computer-Science Capabilities
(Risk B8) 
The appeal of the concepts M1-M4 (see
Figure 2), which are theoretical in nature,
inspires system architects to use OO in
designing complex systems. Concepts
M5-M7 are related to implementation,
and their role is to enable and facilitate
using the theoretical concepts. This risk
item refers to the persistent tension
between the theoretical concepts and
their implementation, and the delicate
balance that must be maintained among
programming languages, developing envi-
ronments, and analysis/design methods.

The viability and feasibility of all
these elements have to be continually ver-
ified against the developed system’s archi-
tecture. A recent example is the introduc-
tion of a promising new programming
technique called Aspect-Oriented Pro-
gramming (AOP). According to Gregor
Kiczales, one of the principal developers
of AOP, integrating AOP with OO devel-
opment environments is difficult [16]. A
standard development environment
would have facilities for structure brows-
ing, smart editing, refactoring, building,
testing, and debugging, but it does not
have a way to represent and directly
manipulate AOP-specific constructs.

Summary
A systematic approach was presented to
identify risks in OO development. The
fundamental concepts of OO were intro-
duced and matched against a well-known,
methodology-neutral list of software
risks. This dissection of OO concepts
allows project managers to more com-
pletely understand the cost/benefit
aspects of applying OO, and to align their
project management strategies better with
the organization’s business goals.u

Acknowledgements
This work would not have been possible
without assistance from the following
people and organizations:
• Reviewers: Richard J. Adams, Sergio

Alvarado, Suellen Eslinger, and
Joanne Tagami all with The
Aerospace Corporation, and Scott A.
Whitmire at ODS Software, Inc.

• Sponsor: Michael Zambrana, U.S. Air
Force Space and Missile Center.

• Funding Source: Mission-Oriented
Investigation and Experimentation

Research Program, Software Acquisi-
tion Task.
A version of this article was present-

ed at the 2004 Pacific Northwest
Software Quality Conference (2004
PNSQC).

References
1. Glass, R.L. “The Naturalness of Object

Orientation: Beating a Dead Horse?”
IEEE Software May/June 2002.

2. Meyer, B. Object Success. Prentice
Hall PTR, 1995.

3. The Institute of Electrical and
Electronics Engineers. IEEE-STD-
1540-2001 – Standard for Software
Life Cycle Processes-Risk Manage-
ment. New York: IEEE, 2001.

4. Merson, P. “Managing J2EE Risks.”
Software Development July 2004.

5. Moynihan, T. “How Experienced
Project Managers Assess Risk.” IEEE
Software, May/June 1997.

6. Boehm, B. IEEE Tutorial on Software
Risk Management. IEEE Computer
Society Press, 1989.

7. Boehm, B. “Software Risk Manage-
ment: Overview and Recent Develop-
ments.” 17th International Forum on
COCOMO and Software Cost Mod-
eling. Los Angeles, CA, Oct. 2002.

8. Fichman, R., and C. Kemerer. “The
Assimilation of Software Process In-
novations: An Organizational Learn-
ing Perspective.” Management Science,
1997.

9. Feiman, J. Migrating Developers to
Java: Is It Worth the Cost and Risks?
Stanford, CT: Gartner, 2000.

10. Flanagan, E.B. “Risky Business.” C++
Report Mar.-Apr. 1995.

11. Binder, R.V. “Object-Oriented Test-
ing: Myth and Reality.” Object Mag-
azine May 1995.

12. Smith, C.U. Performance Engineering
of Software Systems. Addison-
Wesley, 1990.

13. Sandén, B. “Coping with Java
Threads.” IEEE Computer Apr. 2004.

14. Jacobson, I., et al. Software Reuse.
ACM Press, 1997.

15. Northrop, L.M. “A Practical Look at
Software Product Lines.” CASCON
2003, Ontario, CA, Oct. 2003.

16. Kiczales, G., and M. Kersten. “Show
Me the Structure.” Software Develop-
ment Apr. 2000.

Notes
1. Please note that the M1-M11 number-

ing of concepts did not originate from
Meyer; it was introduced by the author
to facilitate the mapping process.

2. The Software Engineering Institute is

Risk Management



February 2005 www.stsc.hill.af.mil 17

Risk Management
www.acq.osd.mil/io/se/risk_
management/index.htm
This is the Department of Defense
(DoD) risk management Web site. The
Systems Engineering group within the
interoperability organization formed a
working group of representatives from
the services and other DoD agencies
involved in systems acquisition to assist
in the evaluation of the DoD’s approach
to risk management. The group will con-
tinue to provide a forum that provides
program managers with the latest tools
and advice on managing risk.

Software Technology
Support Center
www.stsc.hill.af.mil
The Software Technology Support Cen-
ter is an Air Force organization estab-
lished to help other U.S. government
organizations identify, evaluate, and
adopt technologies to improve the quali-
ty of their software products, efficiency
in producing them, and to accurately
predict the cost and schedule of their
delivery.

Software Program
Managers Network
www.spmn.com
The Software Program Managers Net-
work (SPMN) is sponsored by the
deputy under secretary of defense for
Science and Technology, Software
Intensive Systems Directorate. It seeks
out proven industry and government
software best practices and conveys them
to managers of large-scale DoD software-
intensive acquisition programs. SPMN
provides consulting, on-site program
assessments, project risk assessments,
software tools, and hands-on training. 

Software Engineering
Institute
www.sei.cmu.edu
The Software Engineering Institute
(SEI) is a federally funded research and
development center sponsored by the
Department of Defense to provide lead-
ership in advancing the state of the prac-
tice of software engineering to improve
the quality of systems that depend on
software. SEI helps organizations and
individuals improve their software engi-
neering management practices. The site
features complete information on mod-
els the SEI is currently involved in devel-

oping, expanding, or maintaining,
including the Capability Maturity Mod-
el® Integration, Capability Maturity
Model® for Software, Software Acquisi-
tion Capability Maturity Model®, Sys-
tems Engineering Capability Maturity
Model®, and more.

Project Management
Institute
www.pmi.org
The Project Management Institute
(PMI) claims to be the world’s leading
not-for-profit project management pro-
fessional association. PMI provides glob-
al leadership in the development of stan-
dards for the practice of the project man-
agement profession throughout the
world. 

The Software Productivity
Consortium
www.software.org
The Software Productivity Consortium
is a nonprofit partnership of industry,
government, and academia. It develops
processes, methods, tools, and support-
ing services to help members and affili-
ates build high-quality, component-
based systems, and continuously advance
their systems and software engineering
maturity pursuant to the guidelines of all
of the major process and quality frame-
works. Based on the members’ collective
needs, its technical program builds on
current best practices and information
technologies to create project-ready
processes, methods, training, tools, and
supporting services for systems and soft-
ware development. 

INCOSE
www.incose.org
The International Council on Systems
Engineering (INCOSE) was formed to
develop, nurture, and enhance the inter-
disciplinary approach to enable the real-
ization of successful systems. INCOSE
works with industry, academia, and gov-
ernment in these ways: provides a focal
point for disseminating systems engi-
neering knowledge, promotes collabora-
tion in systems engineering education
and research, assures the establishment of
professional standards for integrity in the
practice of systems engineering, and
encourages governmental and industrial
support for research and educational
programs to improve the systems engi-
neering process and its practices. 

WEB SITES
a federally funded research and devel-
opment organization at Carnegie
Mellon University, Pittsburgh, Pa.

3. Risk profile: A chronological record
of a risk’s current and historical state
information [3].

4. Gold-plating is a popular software man-
agement term for implementing fea-
tures by software engineers that go be-
yond the scope of actual requirements.

5. Consider the book’s subtitle: “A manag-
er’s guide to object orientation, its
impact on the corporation and its use
for reengineering the software process.”

6. Black Box testing targets externally
observable behavior that is produced
from a given input, without using any
implementation information.

7. Quality in short is fitness for purpose,
the degree to which a system accom-
plishes its designated functions within
constraint. It includes all the -ities,
e.g., availability, reliability, security,
safety, etc.

Inherent Risks in Object-Oriented Development

About the Author

Peter Hantos, Ph.D., is
currently a senior engi-
neering specialist in the
Software Acquisition and
Process Office of the
Software Engineering

subdivision at The Aerospace Corpora-
tion. He has more than 30 years of expe-
rience as a professor, researcher, soft-
ware engineer, and manager. Previously
as principal scientist at the Xerox
Corporate Engineering Center, Hantos
developed corporate-wide engineering
processes for software-intensive systems,
and as department manager, he directed
all aspects of quality for several laser
printer product lines. He is author of
numerous technical papers and U.S. and
international conference presentations.
Hantos is a member of the Association
for Computing Machinery and senior
member of the Institute of Electrical
and Electronics Engineers. He has a
Master of Science and doctorate degree
in electrical engineering from the Buda-
pest Institute of Technology, Hungary.

The Aerospace Corporation
P.O. Box 92957 – M1/112
El Segundo, CA 90009-2957
Phone: (310) 336-1802
Fax: (310) 563-1160
E-mail: peter.hantos@aero.org



18 CROSSTALK The Journal of Defense Software Engineering February 2005

Software Risk Management
From a System Perspective 

George Holt 
AdaRose Inc. 

Software development can be fraught with frustration. Too often, we treat hardware risks and software risks as separate enti-
ties. Staying focused on the basics of risk management at the system level, from the get-go, is an essential part of minimizing
risks and ensuring the success of even the most challenging and complex development projects. This article stresses the impor-
tance of managing risk from a system perspective by providing concrete examples of how one company applied the fundamen-
tals of risk management to a military tactical system developed under less than ideal conditions.

Developing software can be challeng-
ing and rewarding but seldom easy.

Developing software with a floating hard-
ware baseline can be quite difficult. Add
to this the commensurate development of
test tools, simulators, and emulators by
third parties, and then place schedule and
cost constraints on the entire project, and
you challenge even the best and the
brightest.

Although each project entails unique
demands, challenges, and problems, if we
fail to predict and prevent risks from a
system perspective it can lead to costly
delays, increased stress on team members,
a lesser product – even project failure.

This article stresses the importance of
managing risk from a system perspective.
It provides concrete examples of how
one company, AdaRose Inc., applied the
fundamentals of risk management to a
military tactical system developed under
less than ideal conditions such as those
described above.

The Task at Hand 
AdaRose engineers had prior experience
developing software that resulted in the
first tactical weapon system to run on a
common PC architecture using a com-
mercial operating system. The current
task was to port this software to a new
hardware architecture (still PC-based) that
incorporated three single-board comput-
ers providing navigation, command-and-
control, situational awareness, and real-
time diagnostics.

Along with AdaRose, the Integrated
Product Team (IPT) consisted of a major
defense contractor, a small business hard-
ware manufacturer, the Army end user,
Army research and development special-
ists, and the Army product manager. All
members of the IPT were experienced
professionals with in-depth knowledge of
the weapon system from both a function-
al and operational perspective. The soft-
ware consisted of 230,000 lines of Ada
code with specialized modules and drivers
written in other high order languages.

The Solution 
Although each project has its own
requirements, the fundamentals of effec-
tive risk management at the system level
remain the same. By identifying risks and
developing solutions before and during
the development process, you maximize
the team’s efficiency and the quality of
the finished product.

I would like to start off by referring
the reader to one of my earlier articles,
“Risk Management Fundamentals in
Software Development” published in the
August 2000 issue of CrossTalk [1]. It
describes how to implement an effective
software risk management program. The
fundamentals in that article can be
applied, at the system level, to this mili-
tary tactical system developed under less
than ideal conditions.

Identifying the Risks 
From the get-go, we were informed that
this project would have significant risk

drivers, i.e., (1) it would have cost and
schedule constraints, (2) it would require
software development before the hard-
ware was built, and (3) tools such as lab
simulators and emulators would have to
be developed commensurate with the
tactical software development. What was
initially perceived as a straightforward
port of software to a new hardware envi-
ronment turned out to be a nontrivial
undertaking.

System Level Risks 
The challenge on this project soon
became evident. On the one hand, soft-
ware could not wait for completion of
hardware due to the schedule constraint.
This required us to proceed with software
design and development without access to
a hardware target platform. Additionally,
there was a requirement for building sim-
ulators and emulators for both develop-
ment and testing. However, some of
these tools, being built by Army engi-
neers, would need to be certified before
use and certification required running on
hardware and software that was still under
development.

These parallel development efforts
would require a unique approach to devel-
opment and risk management. At the
macro or program level, we identified the
following risk drivers.
1. Schedule: The schedule would be

constrained and success-oriented, and
the highest priority was placed on
meeting schedule to allow for early
fielding of the system. Time- and
labor-intensive tasks such as docu-
mentation might have to be deferred
until late in the schedule. In addition,
many tasks that would normally be
done sequentially would have to be
done in parallel.

2. Funding: Limited funding was avail-
able for the software portion of the
program. AdaRose would plan to
make maximum use of available fund-
ing by multiple tasking of full-time
engineers and by utilizing part-time

“... the fundamentals of
effective risk

management at the
system level remain the
same. By identifying risks
and developing solutions

before and during
the development process,

you maximize the
team’s eff iciency and the

quality of the
finished product.”



February 2005 www.stsc.hill.af.mil 19

Software Risk Management From a System Perspective

labor for engineering support ele-
ments such as configuration manage-
ment (CM), quality assurance (QA),
lab technicians, and network main-
tainers.

3. Technical: A number of engineering
challenges were evident. The situation-
al awareness (SA) computer had to be
integrated to ensure that any SA failure
would not impact the primary mission
computer. Also, two third-party prod-
ucts – a radar measuring unit and a tac-
tical communication module – needed
to be integrated. AdaRose engineers
had past familiarity with the tactical
software, as well as prior experience
with integrating situational awareness
functionality and third-party products.
Therefore, technical risk, although evi-
dent, was placed third in priority, as it
did not appear to be a showstopper for
the program.

Risk Scenarios
At the start of the program, we devel-
oped a number of risk scenarios to deter-
mine those events or trigger points we
would have to watch, to warn us if and
when the risk became imminent. Even
though technical was not a serious risk
driver, our No. 1 risk scenario involved
the potential that the hardware, still in the
design and development stage, would be
substantially different from the specifica-
tions we were working from. If so, it
could entail software rework and impact
cost and schedule.

Our No. 1 concern was the communi-
cation interface between the tactical appli-
cation and the inertial measurement/nav-
igational unit. In the legacy system, this
had been a straightforward Direct
Memory Access (DMA) interface. Any
change here was very risky because this
unit was at the heart of the system and
failure here meant the system could be
dead in the water. The trigger point we
watched for in this risk scenario was any
change to that interface – and sure
enough it occurred as the project evolved.

Due to hardware limitations on the
tactical single-board computer, DMA
could not be supported and the commu-
nication between the tactical application
and the navigational unit had to be
changed from DMA to an interrupt-dri-
ven serial connection. This, in turn, drove
additional requirements to develop four
new drivers to replace a single generic dri-
ver contained in the old architecture. This
risk was mitigated somewhat by the fact
that AdaRose engineers had prior formal
training in developing software drivers for
this operating system.

Controlling the Risks 
As a baseline to accommodate top-level
program visibility, AdaRose normally uses
the typical Stair Step development process
consisting of (1) requirements analysis
(RA), (2) design, (3) code and unit test
(CUT), (4) system level integration and
test (SIT), and (5) formal qualification test
(FQT). Then, depending on the type of
software to be developed (e.g., new devel-
opment, re-host, block update, prototype,
etc.) and the constraints placed on the
program (e.g., cost, schedule, technical),
this baseline is modified/augmented for
best program performance.

For this program, we decided to mod-
ify the baseline process with a spiral devel-
opment approach to obtain maximum
productivity from our developers and to
mitigate major risk areas. At any point in
time, programmers would be coding and
unit testing in some areas while require-

ments analysis or design would be pro-
ceeding in others. We could also move out
in those areas where the software was not
yet dependent on hardware availability.
For example, we decided, early on, to
develop, application-specific, software
simulators and communication protocol
simulators to test the software – especial-
ly in those technical areas where rapid
prototyping for proof-of-concept or early
risk mitigation was warranted. The
threads we used, throughout the develop-
ment effort, to maintain coherency
became known as feature sets. We found
these to be invaluable risk mitigators.

Feature Sets 
A feature set is a block of executable
software that contains predefined fea-
tures/ requirements that make up a sub-
set of the entire program/application. A
feature set can consist of nothing more

than a rapid prototype to determine
proof-of-concept, or a fully integrated
and tested baseline. The purpose of fea-
ture sets is (1) to put before the user peri-
odic drops of executable code to gain
early concurrence and feedback of the
included features/requirements; (2) to
conduct early-on testing to reduce pro-
gram risk and provide relatively bug-free
software prior to entering FQT; and (3)
to keep the development effort moving
by allowing developers to move forward
on those sets of features that are not
dependent on other events, such as deliv-
ery of target hardware, special tools, or
third-party products.

Ideally, as the program progresses and
the software matures, periodic drops of
feature sets would consist of the most
current feature set along with all previous
sets until such time that the final set is
incorporated and the application is ready
to enter FQT. Most of the early feature
sets were tested using the developed soft-
ware simulators.

The other system level risk mitigators
that we used and that were described in
my earlier articles on risk management [1,
2] are in the following sections.

Integrated Product Teams 
Forming IPTs is another valuable
approach to containing costs and reduc-
ing risks, especially those that might effect
scheduling. The IPT facilitates problem
solving, enables the team to rapidly
respond to changing requirements, and
prompts everyone to work on schedule.

Prototyping 
Exploratory prototyping is an excellent
risk mitigator if project requirements are
ill-defined or likely to change before pro-
ject completion. In addition, exploratory
prototyping is an excellent way to clarify
requirements, identify desirable features
of the target system, and promote the dis-
cussion of alternative solutions.

Prototyping should answer two ques-
tions that are fundamental to software
development and risk management: “Is
the concept sound?” and “Is it worth pro-
ceeding further?” If the answer is not a
clear yes, you may be setting yourself up
for failure. More importantly, without this
insight, you will give the customer a false
sense of what can be accomplished. It is
better to know this up front. Sometimes
the most important risk management
action you will take is to ask these funda-
mental questions.

As an example, on this project we
needed to determine whether or not a
viable software solution could be found

“For this program,
we decided to modify

the baseline process with
a spiral development
approach to obtain

maximum productivity
from our developers and

to mitigate major
risk areas.”



Risk Management

20 CROSSTALK The Journal of Defense Software Engineering February 2005

to replace the aging analog tachometers
that controlled the rate of movement of
the weapon system. We discovered that
rate data was obtainable from the inertial
measurement/navigational unit. We then
proceeded to develop the prototype algo-
rithms that substituted this rate data for
the data from the tachometers. The next
step was to prove the concept. This required
just enough recoding to make it work on
the existing system hardware. This was
successful and as a result we were able to
mitigate this risk early in the program.

If the answers and the risks are satis-
factory in the exploratory prototyping
phase, you can move on to evolutionary

prototyping, which offers several benefits.
It enables your team to quickly and effi-
ciently build on proven aspects of the
software. As a result, the core of the soft-
ware’s foundation is tested and proven
early in the project, significantly reducing
exposure to unknowns. It is an important
contributor to feature sets.

Process Improvement 
Improving processes should be ongoing
throughout the project. For example, this
project required a dual display mode on
the operator’s console. Rather than hold
up development, while waiting on hard-
ware to arrive, we did the necessary design

and coding and used a dual monitor graph-
ics card to test out and prove the design.

It is important to continually ask, “Is
there a better way to get the job done?”
Improving the way you do things cannot
be done in a vacuum – communication at
all levels is critical. Participate with your
customers in IPTs and system manage-
ment teams. In addition, be sure to meet
with the teams’ engineers on a regular
basis for focused, but informal, discus-
sions. While these meetings are exception-
ally valuable, guard against extended meet-
ings that cut into your teams’ work time.

One alternative to lengthy meetings is
to develop and distribute weekly status
reports. These give each member insight
into the progress of the entire project and
a clear view of the big picture. Remember
that you can have the best processes in
place and still fail miserably in software
development. A motivated, goal-oriented,
and knowledgeable workforce will suc-
ceed even when the process is lacking. An
example of one metric we used on a
weekly basis is displayed in Figure 1.

Percent Complete
This metric provided top-level insight to
the stage of development across blocks of
functional requirements. We have shown
here only four of the 13 major functional
areas. Note that work in the communica-
tion interface area had not yet entered the
code-and-unit test phase due to unavail-
ability of hardware being developed by a
third party. However, Windows migration
was well ahead of the curve because it
was not hardware dependent.

Also included in the weekly reports
were more detailed descriptions of the
major risk areas, for example see Figure 2.

Risk rankings were continuously re-
evaluated and reprioritized throughout
the program. As higher priority risks were
worked off, others would move up to take
their place. Risk mitigation became a
dynamic real-time process.

Third Parties:
A Mixed Blessing 
If a product does fail, it is common for
many developers to blame the project’s
failure on third parties. In some cases they
are correct. At times you will have no
choice but to elicit their help. The key is
to minimize how much you depend on
them.

Any time you rely on a product or ser-
vice from someone outside of your group
your risk of failure or delay increases. Your
team may do everything right, but if a cru-
cial third party does not, your work may be

Figure 1: Example of a Weekly Metric

Figure 2: Example of Detailed Descriptions of a Major Risk Area

 



Software Risk Management From a System Perspective

February 2005 www.stsc.hill.af.mil 21

in vain. To illustrate this, consider the risks
you assume by depending on three crucial
components of your project from start to
finish. Assume each product has an 80 per-
cent chance of arriving on time and fully
functional. The probability of success for
all three combined is not 80 percent, it is
0.80 x 0.80 x 0.80 or 51 percent. In other
words, your project now has only a 50-50
chance of success. Do not assume that
third parties will have the same priorities
that you have. Use daily communication
with them to keep them in the loop and
make them a part of your team.

System-Level Cohesion
Needless to say, software cannot be devel-
oped in a vacuum. In the ideal software
world, we would hope to have qualified
hardware, emulators/simulators, and all
design and interface documents delivered
at project start. But that is not realistic,
especially with military tactical systems.
We find that software and hardware are an
integral, non-separable entity. Quite often
participants in system development efforts
will finger point and blame the other guy for
lack of progress.

On this project, we all realized the
many challenges and knew that a success-
ful outcome depended on a strong team
effort. As a result, we witnessed almost
daily instances of engineers supporting
each other – often putting aside their own
work to help move forward a higher pri-
ority effort. We saw a close working rela-
tionship develop between our software
developers and the hardware developer.
AdaRose engineers quite often diagnosed
hardware anomalies and provided work-
able solutions. At the IPT level, all were
well aware of the risks and a helping hand
rather than a pushing hand was the norm.

Results
As of this writing, the project is midway
through formal qualification test. The
schedule is still paramount but software
development was able to proceed in
advance of hardware availability by iden-
tifying and mitigating those critical risk
areas that could be worked off early. We
did this, up front, through rapid prototyp-
ing and by providing feature sets to show
proof-of-concept and provide executable
code to qualify the hardware and help cer-
tify the simulation/emulation tools. This
required a tailoring of our process and
maintaining a viable and dynamic risk
management program at the system level.

Summary 
Software development will always include
risks, but none are insurmountable if you

are prepared to face them at the start.
Risk management is an excellent way to
prepare for daily challenges. Risk manage-
ment must not only be implemented but
continually reassessed throughout the life
of the project. Do not blindly follow any
particular process but do tailor your
process to the job at hand.

A viable risk management plan can
mean the difference between success and
failure. It should, above all else, be flexi-
ble and encourage initiative. Remember to
always look ahead, use rapid prototyping
if necessary, develop simulators if neces-
sary, follow a defined program to mini-
mize and manage risks, use a good set of
metrics, keep the customer in the loop,
and always follow the fundamentals of
sound application development. Follow-
ing this risk management approach will
not guarantee excellent software develop-
ment, but over time it will certainly con-
tribute to your success.u

References
1. Holt, George. “Risk Management

Fundamentals in Software Develop-
ment.” CrossTalk, Aug. 2000: 12-
14 <www.stsc.hill.af.mil/crosstalk/
2000/08/holt.html>.

2. Holt, George. “Software Risk
Management – The Practical Ap-
proach.” Software Tech News 2.2
<www.sof tware technews. com/
technews 2-2/practical.html>.

About the Author

George Holt is presi-
dent and chief executive
officer of AdaRose Inc.
He has a wealth of pro-
gram management expe-
rience primarily with mil-

itary tactical systems. AdaRose recently
re-hosted 230,000 lines of Army tactical
software, written in Ada, to a digital con-
trol unit containing three single-board
computers, providing navigation, artil-
lery fire control, situational awareness,
and a prognostic/diagnostic capability.
Holt is the author of many technical
publications and co-author of “Strategy:
A Reader.”

AdaRose Inc.
430 Marrett RD
Lexington, MA 02421
Phone: (802) 728-9448
Fax: (781) 274-7359
E-mail: holt.adarose@verizon.net

March 5-12
IEEE Aerospace Conference

Big Sky, MT
www.aeroconf.org

March 7-10
SEPG 2005

Seattle, WA
www.sei.cmu.edu/sepg

March 15-16
Dayton Information Security

Conference ’05 
Dayton, OH

www.gdita.org/inc/event
detail.asp?eventID=340

April 4-6
DTIC Annual Users Meeting and

Training Conference
Alexandria, VA

www.dtic.mil/dtic/
annualconf

April 5-7
Federal Office Systems

Exposition (FOSE) 2005
Washington, DC
www.fose.com

April 18-21
2005 Systems and Software 

Technology Conference 

Salt Lake City, UT
www.stc-online.org

May 2-6
Practical Software Quality and

Testing (PSQT) 2005
Las Vegas, NV

www.qualityconferences.com

May 8-12
Nano Science and Technology Institute

2005 Conference
Anaheim, CA

www.nanotech2005.com/

COMING EVENTS



Best Practices

22 CROSSTALK The Journal of Defense Software Engineering February 2005

During 2003, the American Systems
Corporation (ASC) conducted nine

program assessments of commercial and
government organizations. These assess-
ments evaluated 50 individual acquisition
projects that were components of larger
programs. Approximately half were acquisi-
tion programs with the remainder being
programs to develop a product or provide a
service.

The ASC assessment approach used a
series of automated evaluation tools based
on the revised Department of Defense
(DoD) 5000 series of instructions, acquisi-
tion process models, a best practices-based

model, evaluation criteria similar to the cur-
rent Class C Standard Capability Maturity
Model® Integration (CMMI®) Assessment
Method for Process Improvement-based
model, and various specialized evaluation
tools.

One of the major assessments was a
program under a major Navy acquisition
command responsible for acquiring hard-
ware and software for afloat platforms. The
ASC assessed the overall acquisition perfor-
mance and associated risks within this pro-
gram office by utilizing the assessment
process described above in conjunction with
the ASC Gap Analysis Profiling (GAP) tool.

The ASC employs a consistent and
repeatable process to conduct and analyze
results for all assessments. The process
begins with data collection and is accom-
plished by using a variety of questionnaires
depending on the assessment model.
Assessors conduct interviews, review docu-
mentation, and record their observations
and document issues, which they then ana-
lyze manually using the automated GAP
analysis tool.

Outputs include a matrix of risks associ-
ated with specific business processes that
are weighted and sorted by various criteria,
and a histogram that represents a compila-
tion of all data points that identify high-risk
areas and prioritize areas for process
improvement. The assessors also correlate
their observations and issues against proven
best practices such as the Software Program
Managers Network (SPMN) 16 Point Plan,
CMMI criteria, DoD 5000 requirements,
Operational Test readiness criteria, or cus-
tomized evaluation points based on cus-
tomer needs. The results are then docu-
mented in a final report with a consistent
format and saved as a series of program-
specific reports.

Assessment Observations
When we compiled all of the 2003 assess-
ment results (government and commercial),
we observed an interesting anomaly. The
initial results of a commercial assessment
composed of a series of 20 programs iden-
tified two areas of strengths: architecture
development and interface development.
Further analysis indicated that these pro-
grams had the largest cost and schedule
growth of any in the information technolo-
gy portfolio. This observation was inconsis-
tent with what was originally expected.

Managing Acquisition Risk 
by Applying Proven Best Practices

Frank Doherty
U.S. Navy

Data analysis from recent acquisition program assessments has identified common characteristics of successful programs and sup-
porting organizations. First and foremost, organizations with successful acquisition processes must embrace risk management
throughout the entire product life cycle. While risk management is ingrained within their culture, these organizations take active
measures to sustain effective implementation across programs by routinely conducting assessments to maintain currency, applying
proven best practices to address specific risks, and using historical lessons learned to improve future performance. These assess-
ment results also revealed characteristics of unsuccessful programs, primarily a lack of understanding and distinction between
acquisition and development processes. This confusion resulted in an increase in interface issues as well as observable impacts on
product cost, schedule, and quality. As a result of their analysis, the authors conclude that successful acquisition risk manage-
ment is based on: (1) providing educated leadership and a supportive organizational culture, (2) adapting proven best practices
in response to specific circumstances, and (3) emphasizing the program environment rather than process maturity.

Mike Evans and Corinne Segura
American Systems Corporation Inc.

0

50

100

150

200

250

300

350

400

450

500

N
u

m
b

er
 o

f 
N

eg
at

iv
e 

F
in

d
in

g
s

R
is

k 
M

an
ag

em
en

t

Ti
m

el
y 

M
on

ito
rin

g
R

ep
or

tin
g

D
ef

ec
ts

 a
nd

R
ew

or
k

A
cq

ui
si

tio
n

S
tra

te
gy

A
cq

ui
si

tio
n

In
fra

st
ru

ct
ur

e

A
tti

tu
de

s 
an

d
C

ul
tu

re

U
na

ch
ie

va
bl

e
C

on
st

ra
in

ts

R
es

ou
rc

e
A

va
ila

bi
lit

y

C
on

ce
pt

s 
an

d
R

eq
ui

re
m

en
ts

 

C
on

fig
ur

at
io

n 
M

an
ag

em
en

t

P
ro

ce
ss

 In
te

gr
at

io
n

Q
ua

lit
y

A
ss

ur
an

ce
an

d
Te

st
in

g

S
ch

ed
ul

es
 a

nd
B

ud
ge

ts

Summary of Assessment Findings

Figure 1: Observation Summary 



February 2005 www.stsc.hill.af.mil 23

When we reanalyzed the results of our ini-
tial assessment, we identified several factors
that explained these anomalies:
• Management had an unrealistic can-do-at-

all-cost attitude that prevented an objec-
tive assessment of their actual capabili-
ties to contain risk and control rework.
This attitude prevented them from using
available processes correctly, and it pre-
vailed despite the fact that the technolo-
gy being used in the programs appeared
to be adequate. Such a can-do attitude
introduces the risk that the program will
continue on an unproductive path
despite irrefutable evidence that it will
not progress to the desired end state.
For example, with this attitude, manage-
ment would possibly dedicate more peo-
ple and dollars to a problem that is relat-
ed to ineffective processes rather than
address the processes.

• Management failed to identify and
remove defects that reduced product
quality. They failed to manage and miti-
gate risks, which negatively affected cost,
schedule, performance, and services
provided.

• For many of these programs, manage-
ment failed to distinguish adequately
between development and acquisition
practices.
When we reanalyzed the more than 900

observations that were collected during the
initial assessments, we included a new cate-
gorization scheme that focused on the pro-
gram environment. As shown in the his-
togram in Figure 1, the most significant
issues regarding cost and schedule growth,
which seemed to be more significant than
process-related issues, were the attitude and
culture of management and project person-
nel, and the project’s ability to effectively
manage risk. In addition, issues related to
productivity and performing to a plan were
far more prevalent than issues related to
estimating cost or projecting schedules.
Finally, program team members seemed to
be more aware of process integration fac-
tors than specific shortfalls in individual
processes. We concluded that, in terms of
probability of success, this program was
being affected more by the program envi-
ronment than by process shortfalls.

During our reassessment, we observed
that the client’s employees consistently
described practices in the wrong context.
For example, individuals in acquisition
organizations described the practices they
were using to control development base-
lines, the methods they planned to use to
develop the software architecture, or how
they planned to use testing to resolve
product quality issues.

When we evaluated this confusion of

practices, we determined that there was
extensive definition of development best prac-
tices in the form of initiatives such as the 16
Point Plan, Practical Software and Systems
Measurement (PSM), several Office of the
Secretary of Defense (OSD) studies, and
initiatives from the Software Engineering
Institute and the Data and Analysis Center
for Software. However, there were fewer ini-
tiatives related to proven best practices in
the area of acquisition, with many of these
practices blending into overarching models
such as CMMI.

We discovered that in many organiza-
tions we assessed, program team members
often confused development practices with
practices more relevant to acquisition. In an
acquisition environment, practices related to
development can be useful, but they must
be adapted to the specific requirements of
receiving a product rather than building it,
and this adaptation does not always occur.

Figure 2 illustrates various practices
that must be adapted to work within the

larger organization and to fill a specific
role within the context of the overall pro-
gram. As Tim Lister put it at the 1996
Software Technology Conference, “Could
it be that adaptation of process is 90 per-
cent of the problem, and the common
processes are marginal?” [1]. This quote
provides evidence that practitioners with-
in the industry are concerned about suc-
cessful implementation of best practices
in a project environment.

As Figure 2 illustrates, similar prac-
tices must be substantially adapted to
meet the differing needs of the acquirer
and developer.

To facilitate effective adaptation of
common practices, we developed the Issues
Grid (Figure 3) to distinguish between
acquirer and supplier functions as they
relate to nine common issue areas. As the
Issues Grid highlights, the risks that arise
within these areas are specific to the role
the organization plays in the project, and
the response to these risks is driven by dif-

Reporting

Contract

0

Acquisition Practices

1. Acceptance-Based
2. Oversight
3. Acquisition Strategy
4. Minimize Cost
5. Earliest Deployment

Schedule
6. Risks to Deployment

Operations and Support
7. Customer Quality

Criteria
8. Operational Test
9. No User Filter

Development Practices

1. Delivery-Based
2. Production
3. Development Strategy
4. Maximize Profits
5. Earliest-Lowest Cost

Delivery Schedule
6. Risks to Delivery 
7. Contract Quality

Criteria
8. Product Test
9. User Integration

Filtered by Acquirer

Figure 2: Organizational Considerations

Managing Acquisition Risk by Applying Proven Best Practices

Issues Grid
Supplier Issues Common Issues Acquirer Issues
Delivery Integrity Risk Management Deployment and Support

Integrity
Product Acceptance Requirements Operational Effectiveness

and Support
Project Breakdown Baseline Control Product Integrity
Inflexible Project
Change Delays
Tradeoff Constraints

Contracting Cost, Schedule and 
Product Exposure

Product Integrity,
Acceptance and Delivery

Defect Identification and
Tracking

Product Reliability,
Performance and
Operational Integrity

Product Demonstration
Project Completion

Interfaces and
Interoperability

Deployment, Operational
Integrity and Support

Cost Overrun, Late
Delivery, Profit, Impacts,
and Excessive Constraints,
Cost, Schedule, and 
Product Exposure

Estimation and Scheduling Tradeoff Constraints,
Change Delays, and
Contingency Management,
Cost Overrun, Late
Delivery and Excessive
Constraints

Constant Surprises and
Project Chaos

Metrics and Reporting Tradeoff Based on
Incorrect Information

Staff Attrition Staff Issues Staff Consistency

Figure 3. Issues Grid

Figure 3: Issues Grid



Best Practices

24 CROSSTALK The Journal of Defense Software Engineering February 2005

fering organizational motivations and
commitments.

From our observations in 2003, the atti-
tudes of management and staff appeared to
be a driver in program success. Typical com-
ments were as follows:
• “I know there’s risk but the only con-

tract type we have time to manage is
FFP [firm fixed price], which shoves all
risk to the contractor.”

• “The review is next week. We have to
wing the estimate or we won’t get
funded.”

• “Schedule? When do you need it?”
• “I don’t know what you’ll find when

they start using it. It’ll be good enough.”
• “The staff will just have to ‘suck it up.’ I

can’t afford the overtime.”
• “If I tell management that, they’ll fire

me.”
These quotes not only indicate the frus-

tration of the various project stakeholders,
but also the divergence that can exist in how
management, the customer, the staff, and
the users understand the motivations and
commitments of different organizations
and individuals. In such an environment, a
program has little chance of success either
because individual commitments are unreal-
istic or morale is so poor.

The authors have observed many times
that successful implementation of any prac-
tice, whether it can be considered a best
practice or not, depends more on how the
practice is accepted within the program’s
culture and how specifically it is integrated
rather than the value of the concept it pro-
vides. For example, in regard to risk man-
agement, we have observed that every orga-
nization we have assessed explicitly accepts
the value of this practice. We often hear
comments like, “We need to know what can
impact our program early so that we can
better manage it,” or “Risk management is
essential to our success or failure since it
provides us an early warning.”

However, very few of the organizations
we assessed truly embrace the process: Very
few managers are willing to completely

report negative risks to senior management
for fear of negative reaction or unwanted
help. Only an organization that culturally
embraces risk management would assume
the posture that management needs to be
aware of the potential for good and bad
outcomes.

Analysis and Conclusions
Based on our reassessment of our 2003
observations, we reached certain conclu-
sions. First, for an acquisition program to be
successful, the program must be planned
and adequately staffed and resourced. It also
must be consistently executed and follow
acquisition strategies that are aligned with
enterprise and organizational guidelines.
The processes used must be documented
and, most importantly, they must be adapt-
ed to the specific role of the organization
using them; the culture of that organization;
and the realities of staff, schedule, and
resources. Additionally, those processes that
are critical to acquisition success must be
cultural imperatives, and they cannot out-
pace the skills, training, and experience of
the individuals who must apply them.
Finally, an acquisition organization must do
more than simply define the process. A pri-
mary task must also be to identify, tailor,
acquire, integrate, apply, and monitor the
effectiveness of the individual practices,
methods, and tools that are used to imple-
ment the process. Understanding what to do
(process) is important, but understanding
how to do it (practice) is critical.

Because this observation is common
knowledge, the question becomes, “Why
don’t we deal with it?” Impediments to the
implementation of a process often are not
inherent to the process itself, but rather
they arise from the organizational culture.
The CrossTalk article “Seven Charac-
teristics of Dysfunctional Software Proj-
ects” [2] indicates some causes of poor
organizational culture. It identifies seven
specific project characteristics that pre-
clude an organized application of effective
practices to a project:

1. Unwarranted optimism and the unre-
alistic expectations of executive man-
agement.

2. Late decision-making.
3. Inappropriate use of the standard soft-

ware process.
4. Missing or inadequately implemented

program activities.
5. Lack of leadership.
6. Early declarations of victory.
7. Absence of risk management.

When these characteristics exist on an
acquisition project, an attitude develops
that is extremely detrimental to success.
The question then arises, “If these issues
are so apparent, why don’t projects address
them?” As indicated in [2], the two primary
reasons most likely are denial and culture.
Denial becomes an issue when, in the day-
to-day execution of an acquisition project,
an attitude develops that can be character-
ized this way: “The indicators of disaster
are probably wrong, and we won’t be
impacted the way the other 12 projects
were.” Such an attitude can lead acquisition
managers, or any manager for that matter,
to do risky things.

Second, each of the seven factors listed
above relates to cultural rather than techni-
cal issues, which as previously noted,
“Cultural problems are harder to solve than
technical problems …” [3]. To address these
problems adequately, a manager must
understand what makes his or her project
function effectively. That is, the manager
must answer questions such as, “How do all
the project stakeholders interact? What
motivates them? Why don’t they address
important issues even though they are
essential to project success?” Only after
obtaining the answers to these questions can
a manager understand how these seven fac-
tors affect the project and then effectively
minimize them. For an untrained manager,
or a manager under pressure, this is a diffi-
cult prospect that often provides more real-
ity than they or their executive management
are prepared to deal with.

Critical Practices
As part of our reassessment of our 2003
observations, we identified several practices
that can help mitigate the risks and issues
discussed above. The practices we identify
here are based on industry standards and
have been proven as success criteria in all
sizes of programs and projects. These rec-
ommended practices would provide a start-
ing point for programs to regain the health
of their overall program and provide a high-
level road map as a starting point.

One evaluation model is the SPMN 16
Point Plan (Figure 4), which focuses on
evaluating critical practices that address

Issues Grid
Supplier Issues Common Issues Acquirer Issues
Delivery Integrity Risk Management Deployment and Support

Integrity
Product Acceptance Requirements Operational Effectiveness

and Support
Project Breakdown Baseline Control Product Integrity
Inflexible Project
Change Delays
Tradeoff Constraints

Contracting Cost, Schedule and 
Product Exposure

Product Integrity,
Acceptance and Delivery

Defect Identification and
Tracking

Product Reliability,
Performance and
Operational Integrity

Product Demonstration
Project Completion

Interfaces and
Interoperability

Deployment, Operational
Integrity and Support

Cost Overrun, Late
Delivery, Profit, Impacts,
and Excessive Constraints,
Cost, Schedule, and 
Product Exposure

Estimation and Scheduling Tradeoff Constraints,
Change Delays, and
Contingency Management,
Cost Overrun, Late
Delivery and Excessive
Constraints

Constant Surprises and
Project Chaos

Metrics and Reporting Tradeoff Based on
Incorrect Information

Staff Attrition Staff Issues Staff Consistency

Figure 3. Issues Grid

Construction IntegrityProject Integrity Product Stability & Integrity 

� Adopt Continuous Risk 
Management

� Estimate Cost and 
Schedule Empirically

� Use Metrics to Manage
� Track Earned Value
� Track Defects against 

Quality Targets
� Treat People as the Most 

Important Resource

� Adopt Life Cycle 
Configuration Management

� Manage and Trace 
Requirements

� Use System-Based 
Software Design

� Ensure Data and Database 
Interoperability

� Define and Control 
Interfaces

� Design Twice, Code Once
� Assess Reuse Risks and 

Costs

� Inspect Requirements 
and Design

� Manage Testing as a 
Continuous Process

� Compile and Smoke 
Test Frequently

Construction IntegrityProject Integrity Product Integrity
and Stability

• Adopt Continuous Risk 
Management

• Estimate Cost and 
Schedule Empirically

• Use Metrics to Manage

• Track Earned Value

• Track Defects against 
Quality Targets

• Treat People as the Most 
Important Resource

• Adopt Life Cycle 
Configuration Management

• Manage and Trace 
Requirements

• Use System-Based 
Software Design

• Ensure Data and Database 
Interoperability

• Define and Control 
Interfaces

• Design Twice, Code Once
• Assess Reuse Risks and 

Costs

• Inspect Requirements 
and Design

• Manage Testing as a 
Continuous Process

• Compile and Smoke 
Test Frequently

Figure 4: SPMN 16 Point Plan

 



Managing Acquisition Risk by Applying Proven Best Practices

February 2005 www.stsc.hill.af.mil 25

Practice Source 1

Risk management is embraced by the acquisition organization as a cultural imperative and supported and
sustained by management. 16 Point Plan [4]

Contract types must match program risk irrespective of administrative load or overhead. OSD Study [5]
A metrics-based reporting structure based on PSM and the SPMN metrics process is defined and written into
the contract with severe penalties for misreporting. COTS Acquisition Study [6]

Award fee payments are based on the timely identification and correction of issues rather than the accurate
reporting of their existence. COTS Acquisition Study [6]

Acquisition Characteristics and Infrastructure
Independent estimation organizations use a calibrated model to evaluate and validate cost and schedule
baselines based on worst-case scenarios prior to every acquisition review. 16 Point Plan [4]

Acquisition programs have an active user program that involves the customers and users from the start of
the program through deployment and shares the real state of the program, risks, and issues that could
preclude success.

Governance Practices [7]

Acquisition organizations require structured inspections involving their products and require and pay for
contractors/developers to inspect and report metrics concerning defects in requirements, architecture code and
other product related components. The acquirer should inspect acquisition products released to developers,
as the developer should inspect development products released to the acquirer. The acquisition inspections
will find defects in acquirer's products such as concept, user requirements, interfaces, etc. Finding and
fixing these defects prior to their use by a developer will have a significant effect at lower rework cost late in
the program.

16 Point Plan [4]

A defect profile is negotiated as part of the contract and meeting it is a key part of award fee calculation (with
appropriate safeguards). PSM [8]

Attitudes and Culture
Practices required by the acquisition organization are planned, executed, and managed by the acquisition
organization and not relegated to the supplier. 16 Point Plan [4]

Specific requirements to ensure conformance with enterprise data and process models, including content as
well as structure are included in the Contract and Statement of Work. 16 Point Plan [4]

Management and acquisition culture is reality-based, rewarding openness and anticipation of problems and
heavily penalizing burying or not seeing risks, issues, or problems that impede success.

Managers are rewarded or penalized based on how they address risk and reality during acquisition.

The acquisition organization pays for, and requires payment to contractor staff, incentives relating to
teambuilding, performance, product completion, and tenure on project. 16 Point Plan [4]

1 The practices have been modified from the original to reflect the results of the study.
2 Software Program Managers Network (SPMN). 16 Critical Software Practices For Implementing Performance-Based Management. Vers . 3.0, Arlington VA: Integrated Computer Engineering, Inc., 2
Aug. 2000 (http://www.spmn.com).
3 Adams, Richard J., Suellen Eslinger, Karen L. Owens, and Mary A. Rich. Software Acquisition Best Practices, Aerospace Corporation, 2004 Edition; 3rd OSD Conference of Software Intensive Systems, Jan. 2004
(http://www.sei.cmu.edu/products/events/acquisition/2004-presentations/adams-eslinger/adams-eslinger.pdf).
4 Adams, Eslinger, Best Practices For the Acquisition of COTS Based Software Systems, Aerospace Corporation, CSAW 2004 (http://sunset.usc.edu/gsaw/gsaw2004/s12/adams_eslinger.pdf).
5 Adams, Eslinger, Best Practices For the Acquisition of COTS Based Software Systems, Aerospace Corporation, CSAW 2004 (http://sunset.usc.edu/gsaw/gsaw2004/s12/adams_eslinger.pdf).
6 Software Program Managers Network (SPMN). 16 Critical Software Practices For Implementing Performance-Based Management. Vers . 3.0, Arlington VA: Integrated Computer Engineering, Inc., 2
August 2000 (http://www.spmn.com).
7 Dragoon, Alice; More Governance Best Practices, Effective governance promotes resourcefulness. Here are four more best practices of this year's CIO-100 winners, CIO Magazine, August 2003
(http://www.cio.com/archive/081503/factors_sidebar_1.html).
8 Software Program Managers Network (SPMN). 16 Critical Software Practices For Implementing Performance-Based Management. Vers. 3.0, Arlington VA: Integrated Computer Engineering, Inc., 2
August, 2000 (http://www.spmn.com).
9 Buys, Ruth T; DoD Software Core Measures; Fifth Annual PSM Users Conference, July 23-27, 2001 (http://www.psmsc.com/UG2001/Presentations/08OSDSoftwareManagementMetrics.PDF).
10 Software Program Managers Network (SPMN). 16 Critical Software Practices For Implementing Performance-Based Management. Vers ion 3.0, Arlington VA: Integrated Computer Engineering, Inc., 2
August 2000. (http://www.spmn.com).
11 Software Program Managers Network (SPMN). 16 Critical Software Practices For Implementing Performance-Based Management. Vers.3.0, Arlington VA: Integrated Computer Engineering, Inc., 2
August, 2000 (http://www.spmn.com).
12 Adams, Eslinger, Best Practices For the Acquisition of COTS Based Software Systems, Aerospace Corporation, CSAW 2004 (http://sunset.usc.edu/gsaw/gsaw2004/s12/adams_eslinger.pdf)
13 Software Program Managers Network (SPMN). 16 Critical Software Practices For Implementing Performance-Based Management. Vers.3.0, Arlington VA: Integrated Computer Engineering, Inc., 2
August, 2000 (http://www.spmn.com).
14 Adams, Eslinger, Owens, Software Acquisition Best Practices, Aerospace Corporation, 2004 Edition; 3rd OSD Conference of Software Intensive Systems, January 2004
(http://www.sei.cmu.edu/products/events/acquisition/2004-presentations/adams-eslinger/adams-eslinger.pdf).
15 Dragoon, Alice; More Governance Best Practices, Effective governance promotes resourcefulness. Here are four more best practices of this year's CIO-100 winners, CIO Magazine, Aug. 2003
(http://www.cio.com/archive/081503/factors_sidebar_1.html)
16 Adams, Eslinger, Best Practices For the Acquisition of COTS Based Software Systems, Aerospace Corporation, CSAW 2004.
17 Software Program Managers Network (SPMN). 16 Critical Software Practices For Implementing Performance-Based Management. Vers. 3.0, Arlington VA: Integrated Computer Engineering, Inc., 2
August, 2000.
18 Adams, Eslinger, Owens, Software Acquisition Best Practices, Aerospace Corporation, 2004 Edition; 3rd OSD Conference of Software Intensive Systems, Jan. 2004.
19 Dragoon, Alice; More Governance Best Practices, Effective governance promotes resourcefulness. Here are four more best practices of this year's CIO-100 winners, CIO Magazine, Aug. 2003.
20 Software Program Managers Network (SPMN). 16 Critical Software Practices For Implementing Performance-Based Management. Vers. 3.0, Arlington VA: Integrated Computer Engineering, Inc., 2
August, 2000.

Acquisition Best Practices

COTS Acquisition Study [6], 16 Point
Plan [4], OSD Study [5], Governance

Practices [7]

COTS Acquisition Study [6], 16 Point
Plan [4], OSD Study [5], Governance

Practices [7]

Table 1: Best Practices Matrix

key, high-leverage areas practiced by suc-
cessful commercial software developers.
These practices pertain to management
and control the software development
aspects of the work so that the govern-
ment’s requirements are met and high-
quality software is delivered on schedule,
on time, and within cost.

The 16 Point Plan addresses three pri-
mary areas of product management: project
integrity, construction integrity, and product
integrity and stability. Project integrity
encompasses those practices that result in
identification of basic project constraints,
expectations, and metrics as well as practices
used to plan and implement a project envi-
ronment to predictably satisfy those con-
straints, expectations, and metrics.
Construction integrity encompasses those
activities that specify the basic product
requirements; maintain traceability to these
basic requirements; and control the content,
change, and use of the many artifacts and
deliverable products that are produced to
satisfy user and customer requirements and
expectations. The third area, product
integrity and stability, ensures that defects
(which are inserted in products as part of
the software process) are identified and

removed in a timely fashion, and that testing
is complete and effective and results in the
right product consistent with agreed-to
requirements and actual expectations.

Acquisition best practices are different
than those used for product development,
and it is not enough to simply implement a
practice that development organizations use
such as the SPMN 16 Point Plan. The prac-
tices described in Table 1 enable the organi-
zation to monitor the developer and receive
a product rather than directly monitoring
the developing organization that is produc-
ing a product. Practices such as integrated
risk management, which are critical and
must be addressed, should be based on met-
rics, should maintain visibility into contrac-
tor processes, and should evaluate require-
ments from the acquirer’s rather than the
developer’s perspective.

The practices listed in Table 1 can be
misused or misapplied in regard to acquisi-
tion practices. For example, the type of con-
tract selected has a bearing on the type of
practices to be used and on how they must
be adapted. We observed in several assess-
ments during 2003 that the contracting
organization was overworked and did not
have time to construct or administer a cost-

plus fixed-fee (CPFF) contract, despite the
fact that a CPFF contract was more suitable
to the risk. This situation came about
because the contracting professionals did
not have a stake in the success of the pro-
gram but only in the successful award and
administration of the contract.

Constrained by the terms and condi-
tions of the contract, the development
organization is thus forced to perform
high-risk activities such as requirements
analysis, architecture development, and
defect analysis under an inappropriate
contract type. These activities are consid-
ered to be high risk because they are diffi-
cult and expensive to accomplish late in
the program, the findings may result in
unanticipated rework not considered
under the contract type and necessitate
corrective actions that are difficult to
complete within the current process, and
they are subject to schedule constraints.
Correcting these problems would have
been much easier had the contract type
enabled or supported the flexible process
definition. Thus, the wrong contract type
can lead to shortcuts, tradeoffs, and deci-
sions based on the cost of the contract
rather than the quality of the product.



Best Practices

26 CROSSTALK The Journal of Defense Software Engineering February 2005

About the Authors

Mike Evans is a senior
vice president at Ameri-
can Systems Corpo-
ration Inc. Prior to this,
he was president of In-
tegrated Computer En-

gineering, Inc. He is experienced in pro-
viding direct technical services and  sup-
port  in  software  engineering methods
and processes, software standards, qual-
ity assurance, configuration manage-
ment, and  testing. Evans  is  co-founder
and prime contractor for the Software
Program Managers Network, the driving
force behind the Department of De-
fense’s software acquisition best prac-
tices initiative. He is currently co-writing
a book with Dan Galorath on software
estimation and risk management issues,
due to be published in 2005.

America Systems Corporation Inc.
88674 Shoreline Loop
Florence, OR 97439
E-mail: candca@aol.com

Corinne Segura is a pro-
ject manager for Ameri-
can Systems Corporation
Inc. (ASC). For the past
four years, she has pro-
vided technical and man-

agerial support in the areas of process
improvement, risk management, pro-
gram assessments, and test and evalua-
tion. Prior to joining ASC, she served in
the U.S. Navy for 20 years as a fleet sup-
port officer. Segura has a Bachelor of
Science in biology from Northern
Illinois University, a Master of Science in
systems management from University of
Southern California and a Master of
Science in electrical engineering from the
Naval Postgraduate School.

American Systems Corporation Inc.
3033 5th AVE STE 205
San Diego, CA 92103
Phone: (619) 421-1595
Cell: (619) 208-7140
E-mail: corinne.segura@2asc.com

Frank Doherty is the
acting deputy program
manager for the Intell-
igence, Surveillance, Re-
connaissance, and Infor-
mation Operations Pro-

gram Office (PMW-180) at Program
Executive Office C4I and Space, San
Diego, Ca. Doherty served as lead for
acquisition streamlining and chief of
industrial quality and productivity divi-
sion for the Office of the Secretary of
Defense, Deputy Director for Contract
Administration at U.S. Air Force head-
quarters; and chief, contract pricing and
financial services division, headquarters,
Air Force Systems Command.

PMW-180A
Program Executive Office
C4I and Space
4301 Pacific HWY
San Diego, CA 92110-3127
Phone: 619-524-7348
E-mail: francis.doherty@navy.mil

Summary
The application of proven best practices by
acquisition organizations is a powerful risk
reducer. Not all managers and stakeholders
who acquire software products have the
expertise, training, or incentives to deal with
the day-to-day realities of a major acquisi-
tion program. As Watts Humphrey put it,
“Poor project management will defeat good
engineering, and is the most frequent cause
of project failure [9].” Managers who use
proven best practices that are adapted to the
quirks, commitments, and realities of their
acquisition program have an advantage that
will allow them to anticipate and address the
real problems they will invariably face.
Rather than rely on silver bullets to resolve
crises, organizations must establish a culture,
based on practices that have been used suc-
cessfully in the past that anticipates acquisi-
tion risks rather than reacts to them.
“Enterprises that succumb to the silver bul-
let syndrome tend to never improve at all,
and indeed often go backwards [3].”

Improving acquisition processes works
to a point. Most programs have processes,
even though their execution is often pro
forma. The most effective best practices for
acquisition take into consideration the orga-
nizational culture. Effective acquisition
strategies embrace the uncertainty and risk
associated with changing established
processes. Acquisition organizations must

make the often-significant investment nec-
essary to implement and support the prac-
tice (which entails planning, tailoring, prac-
tice documentation, method and tool selec-
tion, training, productivity impacts, artifact
conversion, etc.). Managers must also realize
that the new practice may not provide the
promised improvement in productivity in
the short term. The promise is long term.u

References
1. Lister, Tim. “Software Management For

Adults.” Software Technology Confer-
ence, Salt Lake City, UT, 1996.

2. Evans, Michael, Alex Abela, and Tom
Beltz. “Seven Characteristics of Dys-
functional Software Projects.” Cross-
Talk Apr. 2002: 16-20 <www.stsc.hill.
af.mil/crosstalk/2002/04/evans. html>.

3. Jones, Capers T. Assessment and
Control of Software Risks. New Jersey:
Prentice Hall, Feb. 1994: 241.

4. Software Program Managers Network.
“16 Critical Software Practices for
Implementing Performance-Based Man-
agement.” Vers. 3.0. Arlington, VA: Inte-
grated Computer Engineering, Inc., 2 Aug.
2000 <www.spmn.com/16CSP. html>.

5. Adams, R., S. Eslinger, K. Owens, and
M. Rich. “Software Acquisition Best
Practices: 2004 Edition.” Third Annual
Conference on the Acquisition of
Software Intensive Systems, Arlington,

VA, 26-28 Jan. 2004 <www.sei.cmu.
edu/products/events/acquisition/
2004-presentations/adams-eslinger/
adams-eslinger.pdf>.

6. Adams, R., and S. Eslinger. “Best
Practices for the Acquisition of COTS-
Based Software Systems (CBSS):
Experiences from the Space System
Domain.” Ground System Architectures
Workshop, Manhattan Beach, CA, Mar.
30 - Apr. 1 2004 <http://sunset.usc.edu
/ g s a w / g s a w 2 0 0 4 / s 1 2 / a d a m s _
eslinger.pdf>.

7. Dragoon, Alice. “More Governance
Best Practices.” CIO Aug. 2003
<www.cio.com/archive/081503/
factors_sidebar_1.html>.

8. Buys, Ruth T. “DoD Software Core
Measures.” Fifth Annual PSM Users’
Group Conference, Aspen, CO, 23-27
July 2001 <www.psmsc.com/UG2001/
Pre s en t a t i ons/08OSDSof twa r e
ManagementMetrics.pdf>.

9. Humphrey, Watts S. “Three Dimensions
of Process Improvement Part I: Process
Maturity.” CrossTalk Feb. 1998: 14-17
<www.stsc.hill.af.mil/crosstalk/frames.
asp?uri=1998/02/processimp.asp>.

Notes
1. The practices have been modified from

the original to reflect the results of the
study.



February 2005 www.stsc.hill.af.mil 27

What is risk management? We have all
heard the saying, “Give a man a fish,

and you feed him for a day. Teach a man
to fish, and you feed him for a lifetime.”
Let me revise that from a risk manage-
ment standpoint: “Put out a manager’s
fires, and you help him for a day. Teach a
manager fire prevention, and you help him
for a career.” If a manager understands
good risk management, he can worry
about things other than firefighting.

Unfortunately, most people who look
for risk management help are seeking to
know the steps to put fires out. After all,
being a good firefighter has its rewards!
Take a look at your organization’s person-
of-the-quarter listing for the past few
years. Who is on it? Typically listed is the
person who put out the worst fire. What
about people who avoided the fires in the
first place? Therein lie the problems with
good risk management: people who avoid fires
do not get noticed, and the risks they avoid
do not get documented.

Risks that are well understood and
controlled tend not to become full-blown
problems, and thus are rarely documented
in risk databases. To this day, some people
mistakenly believe the millions of dollars
spent on Year 2000 mitigation were wast-
ed because “nothing bad happened.” This
is the irony: If people die or property is
destroyed, then preventative measures are
deemed inadequate; if nobody is hurt and
nothing is destroyed, then preventative
measures are deemed valueless!

We can do a lot of damage in the name
of process and standardization. Some things
lend themselves well to both such as
building a car on an assembly line. Some
things do not such as creative, knowledge-
based work like design and management.
Yet we sometimes delude ourselves by cre-
ating templates for something like a risk
management plan. Look carefully at such
templates: 80 percent of the outline tends
to be boilerplate or context setting. The
meat is contained in sections that com-

prise only 20 percent of the table of con-
tents entries. What does the template tell
you about those meaty sections? Almost
nothing! The real meat of a risk manage-
ment plan – assembling a qualified team,
devising ways to discover risks, devising
methods of quantifying or categorizing
the risks, and monitoring the risks – can-
not be completed by simply following a
checklist.

In contrast, template instructions for
the non-meaty sections tend to be far
more explicit (e.g., “state your funding
authorization by appropriation for each

fiscal year”). Usually, this information is
readily available and easily culled from
program management plans, status
reports, organizational charts, etc. We
delude ourselves into thinking that a plan
is 80 percent complete when in fact we are
just getting started.

There is a subtle yet critical message
implied in the above: Nobody can give you
a simple risk checklist. The reality is, when
people want to learn/know how to do risk
management, they are looking for Dick-and-
Jane instructions for the meaty 20 percent.
That is, they are specifically looking for
detailed steps on those things that cannot
be determined in advance by someone
who is not intimately familiar with the
project and its domain and environment.

Simply put, they are looking for steps,
words like “go to the financial department
and get last month’s numbers and look for
expenditures that lag the fiscal year spend-
ing plan.” They do not want tasks like
“monitor the expenditures to verify
claimed accomplishments.” The message I
get is, “Do not tell me what to think about
or investigate, tell me exactly who to see,
exactly what to ask, exactly what to record,
and exactly what to do about it. Don’t make
this hard – just tell me exactly what to do.”

There can be value added from a tem-
plate. But this is far more likely when the
template is based on a process or proce-
dure that is absolutely relevant to the pro-
gram. For example, if you are managing
an avionics modernization project, your
risk plan template should come from
another avionics modernization project.
Not only that, but also the template
should have been assessed and revised by
the last project. This feedback loop is crit-
ical! If there was no feedback, then you
have no idea if the template’s prior users
benefited from it or not. In the worst case,
the very template you propose to use may
have hindered their ability to discover,
quantify, categorize, prioritize, and man-
age project risks – and you do not know
that! Ideally, the prior users reviewed and
updated their risk management plan
throughout their project, and all of their
lessons learned were captured – you
should do this, too.

Speaking of lessons learned, I am
often asked for databases of risks, or more
simply, where an interested party should
look for risks experienced in past pro-
grams. The answer always disappoints the
inquirer for two reasons. First, the histori-
cal data that exists is typically a list of prob-
lems, not risks. Risks are undesirable events
that could happen: The concern over pos-
sible glitches associated with Year 2000 is
a great example. Problems are risks that
came to fruition. Problems are well docu-
mented in post-mortem analyses. But

Risk Management (Is Not) for Dummies1

Lt. Col. Steven R. Glazewski
Air Force Institute of Technology

Software program managers crave a silver bullet in the form of a comprehensive checklist of things to watch so the program
does not suffer from bad surprises. Highlighted in this article are some prime examples from almost 15 years’ experience
acquiring software in Department of Defense programs, from identifying broad areas where software risks tend to hide to
describing an eight-step risk management process. While there are no silver bullets to be found, there are a few golden
nuggets if you make the focused effort to look!

“Risks that are well
understood and

controlled tend not to
become full-blown

problems, and thus are
rarely documented in

risk databases.”

Open Forum

 



28 CROSSTALK The Journal of Defense Software Engineering February 2005

good risk management – risk that did not
turn into problems – is forgotten.

Second, risks – and even problems –
experienced by past programs are tuned for
the environment that existed for that pro-
gram and the unique circumstances of
that program. What may have been a high-
priority risk for a past program may not be
worth your investment of resources to
monitor or track. Most people who
request lessons learned do not really want
a database anyway. They want the 15 or 20
items from the database that are most like-
ly to happen to them. And they do not
want to read hundreds of items to find
those 15 to 20 nuggets. They are really
asking me for a five-minute answer to a
two-week question.

That is not to say that there is no value
added in researching history. My experi-
ences show that there is a fertile ground
for finding risks – we know this because
problems have consistently arisen from
these areas. I have learned to focus some
risk identification energy on three areas (if
they are present in a project): test and inte-
gration hardware, interfaces, and reused
code.
• Test and integration hardware tends to

be a capacity-constraining resource. If
you have a system or software integra-
tion lab (SIL), you have a potential
resource conflict. Many efforts in the
program seem to demand SIL time
simultaneously, and usually the soft-
ware developers do not have top prior-
ity. I worked on a program where the
same test hardware was used to vali-
date test software and to test hardware
that was about to be sold to the gov-
ernment. Needless to say, the chance
to generate revenue trumped the soft-
ware developer’s needs until we were
able to prove that the impending
delays to the project would negatively
affect the contractor’s bottom line by
more than a little delay in cash flow.
While working on a different program,
I discovered that the developer’s
detailed schedules required over 30
hours per day in the SIL to meet the
schedule. Scheduling tools are great,
but they fail when you disable or
ignore the resource conflict warnings.

• Interfaces are historically a source of
error, and therefore risk. A recent big
example was the Mars Climate Orbiter
that crashed into the planet in 1999
because one group coded as if the
measurement were in feet while the
other coded as if it were in meters.
Most bugs in a program are problems
found while integrating modules or
communicating between objects. On a

grander scale in systems of systems,
the biggest risks are where the inde-
pendently built systems must interface.
System test engineers always praise a
good interface control document
(ICD) more than the project managers
bemoan the ICD’s cost. We have a
proverb that “good fences make good
neighbors” and the same is true in
software: If everyone knows the
boundary conditions and interfaces,
things go much smoother. The hard
part is resisting the temptation to cut
or minimize the typically large expense
of creating good ICDs. ICDs are used
for inter-system interfaces, but there
are analogous – and equally valuable –
design products that should describe
the intra-system interfaces in detail.

• Reused code, which includes commer-
cial off-the-shelf code, is often sold to
the program as a means of drastically
reducing development and test costs.
Code reuse can certainly reduce costs,
but only within the very narrow cir-
cumstances where you make absolute-
ly no changes to the code, and you use
it for exactly and only the purpose for
which it was designed. Many potential-
ly dangerous commercial products like
pesticides now carry a standard warn-
ing such as “Use of this product in a
manner other than described below is
a violation of federal law.” Yes, the
spray is flammable – no, you should
not use it to light your barbeque grill.
A similar warning should accompany
all attempts to reuse code, albeit only a
warning that it violates sound reuse
strategy, and maybe the laws of good
sense. It is not a bad idea to reuse
code, but you have to accept the limi-
tations when you do. If your plans call
for reusing code and you are assuming
substantial time and cost savings or
test simplification, you had better not
tinker with the reused code (or code
products) in any way, or you violate
your plan/assumption and incur risk.
Of course, the risk manager must look

beyond these three areas, and must apply
knowledge of the project’s details to
determine whether any of those three
areas are applicable and worthy of invest-
ing resources.

Risk management is much like being
the manager of a mutual fund or a stock
analyst on Wall Street. Risk managers are
asked to peer into the future – to make
predictions with better-than-average accu-
racy – to not only be right, but to know
what to do when they are right. Risk man-
agement goes beyond predicting risk; it
also demands planning to handle the risk

once it materializes. (As a side note, think
of how well paid mutual fund managers
and Wall Street stock analysts are, espe-
cially the successful ones!)

How do fund managers and analysts
become successful? They dig into the
details of a company. They may not have
complete data because the company may
not release any more than the minimum
required by law. Yet the manager can
assemble current information about this
particular company, as well as information
from its recent and not-so-recent past.
Information can be gathered about similar
companies over time, and about the seg-
ment of the economy that affects this
company. This information can then be
used to make an educated guess at future
earnings, profits, and trends. In other
words, they develop detailed knowledge
about the specific company, and compare
it with a solid general knowledge about the
industry and the economy. This helps
them more accurately foresee profitability,
which can then be used to make sound
investment decisions.

This is the essence of risk manage-
ment! The risk manager combines detailed
knowledge of the project with general
knowledge of the technical domain and
the acquisition environment to foresee
potential undesirable events, and to plan
and take actions accordingly.

Asking a complete novice to do risk
management is, well, risky. Risk manage-
ment involves thoughtful, determined,
and creative work to implement the fol-
lowing eight-step process.

Step 1: Get Time to Do Risk
Management
If you are spending 95 percent of your
time doing day-to-day operations, you do
not have enough time to sit and think (or
plan or just be creative). You need slack
time – that is, time away from operations
– to plan and think. For a great discussion
on why, read Tom DeMarco’s book Slack
[1]. It even contains a few chapters on risk
management. Sometimes, this seemingly
simple step can be the hardest part. Next
comes the creative part.

Step 2: Plan Your Risk
Management Program
What method will you use to
discover/elicit risks? Who will help? (Hint:
you need those people who are intimately
familiar with the project, the domain, and
the environment.) What are the desired
outputs of your risk analysis? How will
you categorize or quantify risk? What
information must be recorded for each

Open Forum

 



Risk Management (Is Not) For Dummies

February 2005 www.stsc.hill.af.mil 29

risk? Who will use the data and how? Now
comes more creativity (problem solving)
and some tedium.

Step 3: Identify Risks 
Gather the team and identify potential
risks. Remember that the team should
consist of people with lots of project and
domain experience. These people tend to
be senior members and are very busy, so
these identification sessions should be
short and controlled. Excellent adminis-
trative support is absolutely necessary! So
is follow-up and coordination of results.
For each risk identified, the team should
describe what data they need to assess the
risk. Much of that data will probably not
be available at this meeting, which is okay.
This first session is identification only.

Step 4:Assess Risks
The risk team does risk assessment. It
involves a facilitator doing lots of
research and legwork before another
meeting with the experts. Once the data is
available and pre-distributed, the team can
reconvene to assess probabilities and
impacts, determine indicators that a risk
may be coming true, and prioritize the risks
according to the documented procedure.
The indicators are used to select metrics
so the decision-maker can be proactive
when choosing whether to implement
handling strategies.

Step 5: Plan to Handle Risks
With the decision-maker and the team,
decide how each risk will be handled.
Determine what, if any, mitigation efforts
are prudent; what alternative approaches
or procedures are available; and/or how to
share the risk. It is a good idea to identify
thresholds (or trigger points) associated
with the metrics selected in Step 4 so it is
easier to initiate action.

Step 6: Monitor Risks
Conduct operations and periodically
check to see if any of the risks show signs
of turning into problems, or if any of the
risks change because of the dynamics of
project and environment. This period
could be daily or weekly or something dif-
ferent, depending on how dynamic the
project and environment are.

Step 7:Account for Changes
in the Environment and
Project
Periodically go back to Step 3. This period
could be weekly or monthly or something
different, depending on how dynamic the
project and environment are.

Step 8: Improve Your Risk
Management Process
Periodically go back to Step 2. This period
could be quarterly or annually or some-
thing different, depending on how suc-
cessful your program is at giving sufficient
notice of things that may go wrong. This
is the part that everyone hates, but it is the
critical feedback loop that improves the
process – for you and for the next project
that uses your project as a template.

General Ideas
Here are some general ideas on risks. They
must be general because I do not (and
cannot) know the details of every reader’s
situation.
• If you cannot assign a probability,

assess an impact, or draft a unique
action plan, then the risk you have
identified is too generic, or not a risk at
all. For example, stating that the risk is
“our budget will get cut” is meaning-
less because you cannot say what the
impact is or what you would do about
it. A better risk would be “next year’s
budget will be cut by 5 percent, which
means we cannot fully fund long-lead
spares.” Document why you chose the
numbers you did. Why 5 percent and
not 8 percent or 2 percent? Why
impact spares and not tech orders?

• If a risk is a near-certainty, then it is
not a risk, it is something that the pro-
ject’s execution plan should already
address. Does it?

• Risks should be prioritized according to
an agreed-upon scheme. The risk team
may track 100 risks. Project managers
may only have time to track the top 10.
Of those, the senior acquisition offi-
cials probably have time and attention
for only the top two or three. Know
how these lists will be derived. Are they
based on probability of occurrence?
Are they based on severity of impact if
they do occur? Are they based on some
combination of the two?

• A top 10 list should have exactly 10
items. Having 15 different No. 1 priori-
ty items may look good when spread-
ing the wealth for performance review
bullets, but it does nothing for helping
senior people prioritize their time and
the favors they would like to call in.

• Good risk descriptions include indica-
tors, or some method of foreseeing
that the risk may actually be coming
true. The better these indicators are,
the better you can prepare the contin-
gency plans.
Finally, there are many approaches and

processes to manage risk. An Internet

search will turn up dozens. But remember
the rule of domain applicability: If the
risk management process was built by
those making and assembling automo-
biles, it may not be well suited for a differ-
ent environment such as software devel-
opment. Risk management, when done
correctly, consumes the time of the most
experienced, most project-knowledgeable
people who also happen to be the busiest
and highest-paid. However, the cost and
effort to prevent a fire is almost always far
less than the cost and effort to rebuild
after the fire is out.u

Reference
1. Demarco, Tom. Slack: Getting Past

Burnout, Busywork, and the Myth of
Total Efficiency. Broadway, 9 Apr.
2002.

Note
1. The views expressed in this article are

those of the author and do not neces-
sarily reflect the official policy or posi-
tion of the Air Force, Department of
Defense, or the U.S. government
agency.

About the Author

Lt. Col. Steven R.
Glazewski is an instruc-
tor at the Air Force
Institute of Technology.
He teaches Professional
Continuing Education

courses in software project planning and
execution, and software system mainte-
nance as part of the Software
Professional Development Program.
Glazewski has more than 18 years in
weapon system acquisition, including
assignments acquiring software for the
Advanced Cruise Missile, Embedded
GPS/INS navigation unit, and C-5
Avionics Modernization Program, as
well as experience maintaining an
accredited computer model/simulation.
He is an Institute of Electrical  and
Electronics Engineers Computer Society
Certified Software Development
Professional.

Air Force Institute of Technology
3100 Research BLVD
Pod 3
Kettering, OH 45420-4022
Phone: (937) 255-7777 ext. 3274
DSN: 785-7777 ext. 3274
E-mail: steven.glazewski@afit.edu



Departments

30 CROSSTALK The Journal of Defense Software Engineering February 2005

“Capabilities: Building, Protecting, Deploying”



BACKTALK

February 2005 www.stsc.hill.af.mil 31

The question, “How do you make a peanut butter and jelly
(PB&J) sandwich?” takes process back to its basic form: It is

a popular question that has been asked by teachers and profes-
sors for years in an attempt to teach students how to document
step-by-step instructions.

So, what is the process for making a PB&J sandwich? 
• Take two slices of bread out of the bag.
• Place peanut butter on one slice of bread.
• Place jelly on the other slice of bread.
• Place the slice of bread with peanut butter on top of the slice

of bread with jelly – condiment sides together.
• Eat the sandwich.

Details can be added, for example, instructions to take the
twist tie off the bread bag, or indicate how much jelly to use, or
how to spread, etc. Then there are the
exceptions, changes, or tailoring of the process.
Some people like their bread with the crust
cut off. But when do you cut if off? Do
you cut it off prior to or after the condi-
ments have been added? Do you toast the
bread? Then there is the ever-popular
question, “How do you slice the sandwich
prior to eating it – in halves or triangles?”

Buzzwords have been swirling around
this thing called process for some time,
including total quality management, con-
tinuous improvement, process improve-
ment, International Organization for
Standardization (ISO) 9000, Capability
Maturity Model® (CMM®), Six-Sigma, and
others. All have the same purpose – to
make a higher quality product or service faster, better and cheap-
er. Being able to respond and adapt quickly to the needs and
requests of those in the field is a necessity in our industry. The
warfighter is our number one priority!

In the last decade, software developers have been asked to
document their processes in a number of various ways, one of
which is to become CMM Level 3. What exactly does that mean?
Basically it certifies that the way the developer does business,
whether it is production of systems or development of software,
is repeatable, defined, of high quality, and measurable.

Section 804 of the Bob Stump National Defense
Authorization Act for Fiscal Year 2003 mandates that govern-
ment acquisition organizations begin process improvement
efforts in-house. Section 804 requires the establishment of soft-
ware acquisition process improvement (API) programs by those
defense agencies that manage major defense acquisition pro-
grams with a substantial software component. The API require-
ments include the following:
• Documented processes.
• Appropriate metrics to verify performance and acquisition

process improvement.
• Ensuring appropriate training or experience.
• Ensuring adherence to processes and requirements.

By starting a process improvement effort in-house, govern-
ment acquisition organizations complement the efforts being
accomplished by their Level 3 developers. Most government
acquisition organizations do not produce systems or develop

software – they manage, monitor, and acquire these services
from others.

To support organizations that acquire products/services, the
Software Engineering Institute (SEI) created the Software
Acquisition Capability Maturity Model (SA-CMM) to comple-
ment the CMM for Software (SW-CMM) and the Systems
Engineering CMM (SE-CMM). The SA-CMM includes both sys-
tems and software and is a framework for improving acquisition
processes, describing the buyers role. The model is used by senior
management to set goals and to assess an organization’s maturi-
ty. Its use is appropriate throughout the entire product life cycle.

With the CMM IntegrationSM replacing the SW-CMM and SE-
CMM, the office of the secretary of defense has requested that
the SEI assist in developing a CMMI Acquisition Module.

Currently, this document is in draft form with
pilots and a final version is due this year. The
module does not have levels; instead, it con-
centrates on continuous process improvement
rather than the need to acquire a level. The
proposed CMMI Acquisition Module is based
on the CMMI model, incorporating best prac-
tices from the SA-CMM, the Federal Aviation
Administration’s i-CMM, Section 804, and
other sources. It is streamlined (only 32
pages), easily implemented through self-
assessments, and does not require an extensive
infrastructure. The module focuses on effec-
tive acquisition activities and practices that are
implemented by first-level acquisition projects.

Keep in mind, when you ask your
child to write up the PB&J sandwich steps, it

is his/her job to give you grief about it, and your job to embar-
rass him/her with a picture of him/her with peanut butter in the
hair and jelly up the nose.

Remember, when your processes are documented and after
you make your sandwich you get to enjoy it, but BYOPB (bring
your own peanut butter).

— Mamie Danley Morgan, MSOD
Senior Systems Engineer
L-3 Communications, GSI

mamie.morgan@L-3com.com

How Do You Make a Peanut Butter and Jelly Sandwich?

Can You BackTalk?

Here is your chance to make your point, even if it is a bit
tongue-in-cheek, without your boss censoring your writing. In
addition to accepting articles that relate to software engineer-
ing for publication in CrossTalk, we also accept articles for
the BackTalk column. BackTalk articles should provide a
concise, clever, humorous, and insightful perspective on the
software engineering profession or industry or a portion of it.
Your BackTalk article should be entertaining and clever or
original in concept, design, or delivery. The length should not
exceed 750 words.

For a complete author’s packet detailing how to submit
your BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.



CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Co-Sponsored by
U.S. Air Force

Air Logistics Centers
MAS Software Divisions

Software Engineering Division
Ogden Air Logistics Center

 


	Front cover
	Table of Contents
	Risk Management
	Understanding Risk Management
	Risk Management for Systems of Systems©
	Inherent Risks in Object-Oriented Development©
	Software Risk ManagementFrom a System Perspective

	Best Practices
	Managing Acquisition Riskby Applying Proven Best Practices

	Open Forum
	Risk Management (Is Not) for Dummies

	From the Sponsor
	From the Publisher
	Call For Articles
	Web Sites
	Coming Events
	SSTC 2005 Conference Registration
	BackTalk
	Back cover



